Apple Il we

Apple Pascdal

Operating System Reference Manual

NOTICE

Apple Computer Inc. reserves the right to make improvements in the
product described in this manual at any time and without notice.

DISCLAIMER OF ALL WARRANTIES AND LIABILITY

APPLE COMPUTER INC. MAKES NO WARRANTIES, EITHER EXPRESS OR IMPLIED,
WITH RESPECT TO THIS MANUAL OR WITH RESPECT TO THE SOFTWARE DESCRIBED
IN THIS MANUAL, ITS QUALITY, PERFORMANCE, MERCHANTABILITY, OR FITNESS
FOR ANY PARTICULAR PURPOSE. APPLE COMPUTER INC. SOFTWARE IS SOLD OR
LICENSED "AS IS". THE ENTIRE RISK AS TO ITS QUALITY AND PERFORMANCE IS
WITH THE BUYER. SHOULD THE PROGRAMS PROVE DEFECTIVE FOLLOWING THEIR
PURCHASE, THE BUYER (AND NOT APPLE COMPUTER INC., ITS DISTRIBUTOR, OR
ITS RETAILER) ASSUMES THE ENTIRE COST OF ALL NECESSARY SERVICING,
REPAIR, OR CORRECTION AND ANY INCIDENTAL OR CONSEQUENTIAL DAMAGES. 1IN
NO EVENT WILL APPLE COMPUTER INC. BE LIABLE FOR DIRECT, INDIRECT,
INCIDENTAL, OR CONSEQUENTIAL DAMAGES RESULTING FROM ANY DEFECT IN THE
SOFTWARE, EVEN IF APPLE COMPUTER INC. HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES. SOME STATES DO NOT ALLOW THE EXCLUSION OR
LIMITATION OF IMPLIED WARRANTIES OR LIABILITY FOR INCIDENTAL OR
CONSEQUENTIAL DAMAGES, SO THE ABOVE LIMITATION OR EXCLUSION MAY NOT
APPLY TO YOU.

This manual is copyrighted. All rights are reserved. This document
may not, in whole or part, be copied, photocopied, reproduced,
translated or reduced to any electronic medium or machine readable form
without prior consent, in writing, from Apple Computer Inc.

©198@ by APPLE COMPUTER INC.
1426@ Bandley Drive
Cupertino, California 95014
(408) 996-10910

All rights reserved.

The word Apple and the Apple Logo are registered trademarks of APPLE
COMPUTER INC.

APPLE Product #A2L@@28
(93¢-0100-09)

Applell

Apple Pascal

Operating System Reference Manual

ACKNOWLEDGEMENTS

The AppleGJPascal system incorporates UCSD Pascal™ and A le
PP

extensions for graphics and other functions. UCSD Pascal was
developed largely by the Institute for Information Science at the
University of California at San Diego, under the direction of Kenneth
L. Bowles.

"UCSD PASCAL" is a trademark of The Regents of The University of
California. Use thereof in conjunction with any goods or services is
authorized by specific license only and is an indication that the

associated product or service has met quality assurance standards
prescribed by the University. Any unauthorized use thereof is

contrary to the laws of the State of California.

APPLE PASCAL OPERATING SYSTEM

TABLE OF CONTENTS

CHAPTER 1
INTRODUCTION

1
2 How to Use This Manual
4 Manual Organization Summary
CHAPTER 2
THE COMMAND LEVEL 5
6 The Operating System
9 Commands Usable at All Levels
11 Using the Command Level
16 The Command Level Options
20 Command Option Summary
CHAPTER 3
THE FILER 22
24 Introduction
26 Volumes
28 Files
33 Using the Filer
34 The Filer Commands
67 Filer Command Summary
CHAPTER 4
THE EDITOR 70
72 Introduction
77 A Brief Scenario

83 A Little More Detail
89 The Editor Commands
124 Editor Command Summary

TABLE OF CONITENTS

CHAPTER 5
THE PASCAL COMPILER

127
128 Introduction
130 Using the Compiler
CHAPTER 6
THE 6502 ASSEMBLER 134
136 Introduction
138 Using the Assembler
151 Assembler Information
157 The Assembler Directives
172 Assembler Directive Summary
CHAPTER 7
THE LINKER 175
176 Introduction
178 Using the Linker
CHAPTER 8
UTILITY PROGRAMS 183
185 Introduction

185 Formatting New Diskettes
187 The System Librarian
195 Library Mapping

200 System Reconfiguration

211 Changing GOTOXY Communication
215 Removing Linefeed from Return
217 Calculator

219 Utilities Summary

APPLE PASCAL OPERATING SYSTEM

APPENDIX A
ARCHITECTURE OF THE P-MACHINE

223
224 Technical Information
229 The P-Machine Instruction Set
APPENDIX B
OPERATION OF THE P-MACHINE 247
248 Introduction
248 The System Codefile
254 System Memory Use
260 Overview
APPENDIX C
FILE FORMATS 265
266 Text Files
266 Data Files
266 Code Files
APPENDIX D
TABLES 271

272
273
276
277
278
280
281
283
284

When to Use .TEXT and .CODE
Language System Diskette Files
Pascal I/0 Device Volumes
Apple I/0 Device Slots
Execution Error Messages

I/0 Error Messages

6502 Assembler Error Messages
ASCII Character Codes
P-Machine Op-Codes

TABLE OF CONTENTS

APPENDIX E
OPERATING SYSTEM SUMMARY 285

286 Operating System
286 Command Level
287 Filer

288 Editor

289 Compiler

289 Assembler

289 Linker

290 Utilities

INDEX 292

Inside Back Cover Apple Pascal Command Tree

APPLE PASCAL OPERATING SYSTEM

CHAPTER 1

HOW TO USE THIS MANUAL
Getting Started

The Operating System

The Language

MANUAL ORGANIZATION SUMMARY

W NN

HOW TO USE THIS MANUAL

The Apple Pascal system is intended to run on the Apple II and Apple II-
Plus computers. The system requires 48K bytes of installed memory, one
or more Apple Disk II disk drives and the Apple Language System.
Installation procedures and other instructions for the required
Language Card are covered in the small Apple Language System manual,
which you should read before beginning this manual.

The above symbol appears throughout this manual. Its purpose is to
alert you to an unusual feature of the Apple Pascal operating system.

GETTING STARTED

The Apple Pascal Operating System Reference Manual and the language
reference manual for the programming language you will use with the
Appple Pascal operating system are most definitely not intended for
beginners at using computers and Pascal. However, each language
reference manual for use with the Apple Pascal operating system
includes easily followed chapters to help you begin using the operating
system with that programming language. Read these chapters in the
programming language reference manual FIRST. They will help introduce
you to the Apple Pascal operating system and help you get the "feel" of
things, after which the more technical material in the Apple Pascal
Operating System Reference Manual will be easier to follow.

THE OPERATING SYSTEM

The Apple Pascal system includes a Filer for handling disk files, a
powerful text Editor for writing programs, a Pascal Compiler to convert
your programs into executable P-code, a 6502 Assembler to convert
assembly-language routines into machine-language code, and a Linker to
combine other routines into your program. These make up the Apple
Pascal operating system: they are not part of the Pascal programming
language itself, but they help you to write, store, and execute your
programs. In Chapters 2 through 7 of this manual, you will find
detailed discussions of each portion of the operating system. The
"command tree" shown on the inside back cover will help you find your
way around in the various levels of the operating system.

2 APPLE PASCAL OPERATING SYSTEM

In addition to the main operating system, there are also various utility
programs which let you format new diskettes, put routines into a system

library, and configure your system to run with most external terminals.

These utility programs and others are discussed in Chapter 8.

In each chapter about the operating system, a special '"Diskfiles"
section tells you which Language System diskette to put in each disk
drive before attempting to use that portion of the operating system.
These "Diskfiles" sections can be a great help, especially for one-disk-
drive systems, where use of the Language System diskettes may seem
confusing, at first.

In general, each chapter in this manual contains a detailed discussion
of a particular portion of the Apple Pascal operating system, followed
by a summary of the information in that chapter. Read the main body
of the chapter the first time, and whenever you need detailed
information about that topic. Use the summary for a quick reference,
when you just need to be reminded of information you already know.

An even briefer summary of all the operating system commands appears
in the last appendix, at the end of this manual.

THE LANGUAGE

This manual contains some information about using the Apple Pascal
operating system with the Apple Pascal programming language and with

6502 assembly language. However, it does not attempt to describe or
explain the details of any programming language. For further

information about any of the programming languages used with the Apple

Pascal operating system, you should consult the reference manuals for
the individual languages.

INTRODUCTION 3

MANUAL ORGANIZATION SUMMARY

Chapter 1 INTRODUCTION

Chapter 2 COMMAND level: to select Filing, Editing, Compiling,
Assembling, Linking, Running, etc.

Chapter 3 FILER: handles disk and other files

Chapter 4 EDITOR: for writing and changing text files

Chapter 5 COMPILER: converts Pascal text into P-code

Chapter 6 ASSEMBLER: converts assembly-language text into 6502
machine-language

Chapter 7 LINKER: ties external routines into your programs

Chapter 8 UTILITIES: disk formatter, installing routines into a
system library, external terminal setup, etce.

Appendix A Architecture of the P-machine

Appendix B Operation of the P-machine

Appendix C File formats

Appendix D TABLES of useful information

Appendix E SUMMARY of all operating system commands

4 APPLE PASCAL OPERATING SYSTEM

CHAPTER 2

W W oo~ N O,

T2 OPERATING SYSTEM

The Screen Display

The Prompt Line
Diskfiles Needed for Booting
Making a Turnkey System
The Workfile

COMMANDS USABLE AT ALL LEVELS
CTRL-A

CTRL-Z

CTRL-@

CTRL~F

CTRL-S

Power Down-and-Up

RESET

USING THE COMMAND LEVEL
Diskfiles Needed

THE COMMAND LEVEL OPTIONS
F(ile

E(dit

C(ompile

A(ssemble

L{ink

X(ecute

R{un

D(ebug

U(ser restart

I(nitialize

H(alt

COMMAND OPTION SUMMARY

THE OPERATING SYSTEM

The Apple Pascal system described in this document is intended to run
on the Apple II and Apple II-Plus computers. The system requires 48K
bytes of installed memory, one or more Apple Disk II disk drives and
the Apple Language System.

While the system is primarily intended to use the Apple keyboard and the
usual TV or monitor, an external CRT terminal such as the Soroc IQ 12§
can act as the CONSOLE device, connected to the Apple through a
modified Apple Communications Interface Card. With such an external
terminal, it becomes possible to do text and program editing in upper
and lower case on a large (8§ characters by 24 lines) screen. For most

programming purposes, an external terminal is completely unnecessary.

This manual is written specifically for using the Apple Pascal operating
system with the Apple Pascal programming language and compiler. If you
are using the Apple Pascal operating system with any other programming
language, you must first read that language’s reference manual for
special instructions about using this operating system.

THE SCREEN DISPLAY

The Apple Pascal operating system always uses a display that is 8¢
characters wide. The Apple’s 4@-character screen normally shows only

the leftmost 4@ characters (the left '"page'") of the Pascal display,
which is sufficient for most applications. To see the rightmost 4@

characters (the right "page") of the display, type A while holding
down the CTRL key (we will usually call this "CTRL-A"). Press CTRL-A
again to go back to the left '"page'" of the display. When the white

square cursor is on the screen, you can make the Apple screen scroll
right and left to "follow" the cursor automatically, by pressing CTRL-
Z. CTRL-A (like many other commands) cancels CTRL-Z.

THE PROMPT LINE

At most times you will see a "prompt line" which shows the command
options available to you at the moment. Here are 2 examples:

COMMAND: E(DIT, R(UN, F(ILE, C(OMP, L(INK, X(ECUTE, A(SSEM, D(EBUG, ?
COMMAND: E(DIT, R(UN, F(ILE, C(OMP, L(IN
Note: In general, prompt lines throughout this manual are given in two

somewhat different forms. The longer, more complete form is the
prompt line as it might appear on an external terminal which can

display an 8@-character line. The shorter form is the prompt line as

6 APPLE PASCAL OPERATING SYSTEM

it will appear on the Apple’s 4f-character monitor or TV screen. 1In a
few cases, the order of the options shown in the long form differs
from that in the shorter form. Many prompt lines end in a series of
letters and numbers enclosed in square brackets. These indicate the
version number of the portion of the program with which you are
working.

In response to this prompt line, you can use the Editor, Run a
program, operate the Filer, or choose any of several other optionms,
just by typing a single letter. Typing E , for example, will invoke
the Editor.

When you do invoke the Editor (or exercise almost any of the other
options), you will usually be shown another prompt line that allows you
to choose command options appropriate to that activity. The "command
tree" shown on the inside back cover of this manual will help you find
your way around in the various levels of the operating system.

Sometimes the prompt line contains too many options to fit on the
screen’s two 4@-character "pages". If this happens, a question
mark (?) may appear at the end of the prompt line. Whether or not
the ? appears in the prompt line, typing ? will cause any
remaining command options to be displayed.

On some occasions, you will have to type a name or other information
longer than a single character. These entries are terminated by
pressing the RETURN key. If you make a typing mistake before pressing
the RETURN key, you can backspace over the error by pressing the
backspace key (left-pointing arrow key) near the right side of the
keyboard. Typing a CTRL-X will erase all the characters you have just
typed. On a terminal such as the Soroc IQ 128, a RUB key (or another
key) may do this quick-erase. If you wish to get rid of the question
altogether, just press the RETURN key.

DISKFILES NEEDED FOR BOOTING

The following diskfile is needed for the first stage of a '"cold boot"
of the system:

SYSTEM.APPLE (in the boot drive; required)

The system is '"cold booted" every time the Apple’s power is turned on,
or when the H(alt option is selected from the COMMAND prompt line.

The file SYSTEM.APPLE contains the interpreter, which allows compiled
P-code to be executed by Apple’s 65@2 processor. The interpreter is
loaded into the Language Card’s memory, and write-protected there. It
does not have to be re-loaded until the next cold boot of the system.
This file is normally found on diskette APPLEl: and also on diskette
APPLE3:, so either of those diskettes may be placed in the boot drive
(volume #4:) to begin a cold boot.

COMMAND LEVEL 7

The following diskfiles are needed to complete a "cold boot" of the
system, or to effect a "warm boot" of the system:

SYSTEM.PASCAL (in the boot drive; required)
SYSTEM.MISCINFO (in the boot drive; required)

The system is '"warm booted" when the Apple’s RESET key is pressed,

when the I(nitialize option is selected from the COMMAND prompt line,
or when any system error causes the system to be re-initialized (re-
booted). These two files are normally found on diskette APPLE@: and
also on diskette APPLEl:, so either of those diskettes may be placed

in the boot drive (volume #4:) to effect a warm boot, or to complete a
cold boot. The diskette which supplies these two files becomes the
system’s '"boot diskette'.

In general then, it is easiest to cold-boot any system with diskette
APPLEl: in the boot drive. Once this cold boot is complete, one-drive

users may wish to switch to APPLE@: as their system diskette, by
placing APPLE@: in the boot drive and pressing the RESET key. A warm

boot may be carried out if either diskette APPLE@: or diskette APPLEL:
is in the boot drive.

Note: If APPLE3: is used to start a cold boot, no message appears on

the screen. When all action ceases, put APPLE@: or APPLEl: in the
boot drive and press the RESET key to complete booting.

MAKING A TURNKEY SYSTEM

The Apple Pascal system allows you to set up a turnkey system, which

will automatically begin running a particular program when the Apple is
turned on. To set up your Apple as a turnkey system, first make a copy
of diskette APPLEl: and use the Filer’s C(hange command to change the
copy’s name to something you will recognize. For example, you might
name this diskette TURNKEY: . Now T(ransfer a copy of your program
codefile onto the turnkey diskette, giving this new copy of your
program the filename SYSTEM.STARTUP . Make sure your turnkey diskette
contains the following files:

SYSTEM.APPLE

SYSTEM.PASCAL

SYSTEM.MISCINFO

SYSTEM.LIBRARY (if needed by your STARTUP program)

SYSTEM.CHARSET (if needed by your STARTUP program)
SYSTEM. STARTUP

You may remove any other files (such as SYSTEM.FILER, SYSTEM.EDITOR,
and SYSTEM.SYNTAX) if you need more space on the diskette for your

program’s files.

To run your turnkey program, put the turnkey diskette in the boot drive

and turn on the Apple’s power. Soon, and with no further intervention,
SYSTEM.STARTUP is executed. Thereafter, SYSTEM.STARTUP will also be
executed each time the system is re-booted, re-initialized, or the RESET

key is pressed.

8 APPLE PASCAL OPERATING SYSTEM

THE WORKFILE

The Apple Pascal system makes frequent use of a "workfile". The
workfile is a special "default file" used during the development of a
program or a piece of text. You can Edit, Save and Update, Compile or
Assemble, Link and Run the workfile as often as you wish, without
having to specify the name of the workfile for each operation. These
operations automatically assume you are referring to the workfile on
the boot diskette, if there is a workfile currently stored on that
diskette, and if that diskette can be found in one of the disk drives.
The boot diskette is the diskette that was in the boot drive, volume
#4: (slot 6, drive 1), the last time the system was booted.

The system always stores the workfile on the boot diskette, using the
same filename: SYSTEM.WRK . This is handy for you and the system, as
it makes it easy to find the current file on which you are working.
For text, the stored workfile’s full name is always SYSTEM.WRK.TEXT .
For programs, the stored workfile often consists of both the text
version (SYSTEM.WRK.TEXT) and the compiled or assembled version
(SYSTEM.WRK.CODE) which are saved and retrieved together. Individual
commands automatically use the correct version of the workfile.

It is also possible to designate any other filename as the next

workfile, using the Filer’s G(et command. This command removes any
old files named SYSTEM.WRK from the boot diskette, but does NOT create

a new file named SYSTEM.WRK . Instead, the next time any command

(such as Edit, Compile, or Run) attempts to use the workfile, the file
designated by G(et is used.

Only one workfile is allowed at any one time. This is no limitation,
since it is easy to Save your current workfile under a filename of

your choosing, so that you can create another workfile. And it is
just as easy to bring a saved file back to be your new workfile.
These operations are covered in this manual’s chapter THE FILER.

COMMANDS USABLE AT ALL LEVELS

Certain system commands can be executed at ANY level of the operating
system, regardless of which option is in force at the moment. You

have already been introduced to those affecting the screen, but there
are others, as well. These omni-present commands are listed below; at

no time do these commands appear on any prompt line. Note that the
system will detect a typed command only when the next input or output
operation begins.

CTRL-A

Shows the other 40-character 'page" of the Apple Pascal system’s
80-character display, until the next CTRL-A.

COMMAND LEVEL

9

CIRL-Z

Initiates "Auto-follow" mode: the screen scrolls right and left to
follow the cursor. Cancelled by CTRL-A and many other commands.

CIRL-@

Causes current program to be interrupted and issues the message
""PROGRAM INTERRUPTED BY USER." Press spacebar to reinitialize the
system.

CITRL-F

Causes subsequent program output to be flushed. The program continues
to run, but its output is not sent to the screen or the printer.
Cancelled by the next CTRL-F .

CIRL-S

Stops any on-going operating system process or program. When the next
CTRL-S is typed, the process continues.

POWER DOWN-AND-UP

Turning the Apple’s power switch off and then on again does a '"cold
boot" of the system, just as if the system were being turned on for the
first time. This command will stop any on-going process, at the
expense of losing whatever is in the Apple’s memory. When the system
"hangs" (stops and does not respond to the keyboard, even when you
press the RESET key), this command will usually re-start the system.
After this command, you will have to repeat the entire normal startup
procedure. The P-code interpreter is loaded into the Language Card and
write-protected there, so the file SYSTEM.APPLE must be on the diskette
in the boot drive, volume #4:. To accomplish a cold boot, one-disk-
drive systems and multiple-disk-drive systems must both start with
diskette APPLEl: in the boot drive.

RESET

Pressing the Apple’s RESET key does a "warm boot" of the system. This
command will stop almost any ongoing process, at the expense of losing

whatever is in the Apple’s memory. When the system "hangs" (stops and
does not respond to the keyboard), this command will usually re-start

the system. The P-code interpreter is not re-loaded into the Language

10 APPLE PASCAL OPERATING SYSTEM

Card by a warm boot, so the diskette file SYSTEM.APPLE need not be
present. To accomplish a warm boot, either diskette APPLEl: or
diskette APPLE@: must be in the boot drive, volume #4 .

USING THE COMMAND LEVEL

The Command level of the Apple Pascal system is reached whenever you
boot or reset the system (by any means), when the system re-
initializes itself after a fatal run-time error, when you Q(uit the
Editor or the Filer, and when you finish C(ompiling, A(ssembling,
L(inking, X(ecuting, or R(unning any utility or other program. You

have already seen the COMMAND prompt line:
COMMAND: E(DIT, R(UN, F(ILE, C(OMP, L(INK, X(ECUTE, A(SSEM, D(EBUG, ?

Use CTRL-A to see the rest of the prompt line. After typing a ?
the remaining Command options are shown:

b

COMMAND: U(SER RESTART, I(NITIALIZE, H(ALT

DISKFILES NEEDED

The Apple Pascal operating system is much too large a program to be
kept entirely in the Apple’s memory all the time. Besides, you use
only'a small part of the operating system at any given time. For this
reason, the operating system is broken into several smaller portioms,
and these program portions are stored in separate diskfiles on the
system diskettes, under filenames such as SYSTEM.FILER, SYSTEM.EDITOR,
and SYSTEM.COMPILER. Each option from the COMMAND prompt line uses
one or more of these special diskfiles.

Before you specify a particular Command option, you must first make
sure that the diskfiles needed by that portion of the operating system
are available. In most cases, the required diskfile is allowed to be
on ANY diskette in any of your system’s disk drives. The system just

goes through the diskettes in every drive until it finds a file with
the necessary filename.

The workfile (SYSTEM.WRK.TEXT and SYSTEM.WRK.CODE) and the Compiler’s
error-message file (SYSTEM.SYNTAX) will be found by the system ONLY if
they are on the boot diskette. The boot diskette is the diskette that
was in the boot drive, volume #4: (slot 6, drive 1), the last time the
system was booted. The system will usually look for the boot diskette
in the boot drive first, but will also look in the other drives if
necessarye.

The diskfiles SYSTEM.PASCAL and SYSTEM.LIBRARY are usually accessed by
going directly to their positions on the diskette in the boot drive.
During the booting process, the system notes the positions of these
two files on the boot diskette. Thereafter, whenever the system needs
either of those files, it assumes that the diskette in the boot drive

COMMAND LEVEL M

still contains the needed files in exactly the same diskette positions
occupied by those files during the last boot. If the system does not
find the correct information at those diskette locations, the system
may "hang" (stop responding to the keyboard), and you will have to re-
boot. If you change the contents or the position of either of these
files, you should RESET or I(nitialize the system to let it discover
the change.

During program execution, the information in SYSTEM.LIBRARY is
accessed by its boot-time position in the boot drive. During linking,
however, the Linker searches for *SYSTEM.LIBRARY by name, and will
find it on the boot diskette in any drive.

For information about entering the Command level via a "cold boot" or
via a "warm boot", see the section DISKFILES NEEDED FOR BOOTING,
earlier in this chapter. The system is '"cold booted" when the
Apple’s power is turned on, or when the Command option H(alt is
selected. The system is 'warm booted" when the Apple’s RESET key is
pressed, when the Command option I(nitialize is selected, or when any
system error causes the system to be re-initialized (re-booted).

The following diskfile is needed each time the system returns to the
Command level following the termination of any option or program:

SYSTEM.PASCAL (boot diskette, in boot drive; required)

This file contains the Command level portion of the operating system.
The system tries to re-enter the Command level after any program is
terminated by Q(uitting any portion of the operating system, by
reaching the END. of any option or any program that you are executing,
or by any non-fatal execution error.

When the system attempts to return to Command level it first checks to
be sure the diskette in the boot drive is the correct boot diskette.
If the diskette is in the boot drive, but does not have SYSTEM.PASCAL
in the expected diskette locations, the system may "hang'", and may not
respond even to the RESET key. In this case, you will have to cold
boot the system by turning the power off and then on again, with
diskette APPLEl: in the boot drive.

Each return to Command level must find the boot diskette in the boot
drive. The easiest way to accomplish this is to make sure your boot
diskette is in the boot drive whenever a Command option or program is
terminated. If a return to Command level finds the wrong diskette
in the boot drive, you will be prompted

PUT IN APPLEIL:
(if APPLEL: is your boot diskette). The boot drive will start again

and again, until you press RESET or put the correct boot diskette in
the boot drive.

12 APPLE PASCAL OPERATING SYSTEM

The file SYSTEM.PASCAL is normally found on diskette APPLE@: and also

on diskette APPLEl: .

However, you must stick with one or the other

(the one which is your boot diskette) when leaving the Command level

and returning to it.

To change from using one of these diskettes to

using the other as your boot diskette, you should place the new
diskette in the boot drive and press the Apple’s RESET key to re-

boot.

You should also re-boot the system any time you move the file
SYSTEM.PASCAL on your system diskette.

Re-booting lets the system

discover a new boot-diskette’s name, and also discover SYSTEM.PASCAL’s
new diskette location.

The following table summarizes the diskfiles needed by various
command options:

COMMAND

F(ile

E(dit

C(ompile

A(ssemble

L(ink

FILES NEEDED

SYSTEM.FILER
Files to be
moved

SYSTEM.EDITOR
Textfile to be
Edited

SYSTEM.COMPILER
Textfile to be
Compiled
SYSTEM.LIBRARY

SYSTEM.EDITOR
SYSTEM.SYNTAX
SYSTEM.ASSMBLER
65¢@.0PCODES
6500 .ERRORS
Textfile to be

Assembled
SYSTEM.EDITOR

SYSTEM.LINKER
Host codefile

Library codefile

WHERE FILES MUST BE FOUND

(any disk, any drive; needed only at start)
(any disks, any drives; T(ransfer

requires source file to be present;

can prompt for destination file)

(any disk, any drive)
(any disk, any drive; optional; default
boot disk’s SYSTEM.WRK.TEXT, any drive)

(any disk, any drive)

(any disk, any drive; default is boot
disk’s SYSTEM.WRK.TEXT, any drive)

(boot disk, boot drive; required only
if program USES Intrinsic Units)

(any disk, any drive; optional; to fix
errors found by Compiler)

(boot disk, any drive; optional; provides
error messages on entering Editor)

(any disk, any drive)
(any disk, any drive; required)

(any disk, any drive; optional; pro-
vides error messages in Assembler)
(any disk, any drive; default is boot
disk’s SYSTEM.WRK.TEXT, any drive)
(any disk, any drive; optional; to fix

errors found by Assembler)

(any disk, any drive; needed only to start)

(any disk, any drive; default is boot
disk’s SYSTEM.WRK.CODE, any drive)

(any disk, any drive; default is boot
disk’s SYSTEM.LIBRARY in any drive)

COMMAND LEVEL 13

X(ecute Codefile to be
eXecuted
SYSTEM.LIBRARY

SYSTEM.CHARSET

R(un Text or Codefile
to be Run
SYSTEM.COMPILER
SYSTEM. EDITOR
SYSTEM. SYNTAX

SYSTEM.LINKER

SYSTEM.LIBRARY

SYSTEM.LIBRARY

SYSTEM.PASCAL

SYSTEM.CHARSET

U(ser restart All files
needed by last
program or option

I(nitialize SYSTEM.PASCAL
SYSTEM.MISCINFO

H(alt SYSTEM.APPLE
SYSTEM.PASCAL
SYSTEM.MISCINFO

Return to SYSTEM.PASCAL

Command
Level

The '"boot drive" is volume #4:

(any disk, any drive; required only
when loading, if no segment overlays)

(boot disk, boot drive; required if the
program uses long integers, does file
I/0 using reals or SEEK, or USES
Intrinsic Units)

(any disk, any drive; required if WCHAR
or WSTRING called from TURTLEGRAPHICS)

(any disk, any drive; default is boot
disk’s SYSTEM.WRK.CODE or .TEXT)

(any disk, any drive; required only if
file being Run is a textfile)

(any disk, any drive; optional; to fix
errors found by Compiler)

(boot disk, any drive; optional; provides
error messages on entering Editor)

(any disk, any drive; required only if
other routines need to be Linked in)
(no Link needed to USE Intrinsic Units)

(boot disk, any drive; required to hold
needed routines if Linker called)

(boot disk, boot drive; required if
program uses long integers, does file
I/0 using reals or SEEK, or USES
Intrinsic Units)

(boot disk, boot drive; required between
Compiling, Linking, and eXecuting.

(any disk, any drive; required only if
program uses WCHAR or WSTRING from
TURTLEGRAPHICS)

(same file locations required by last
program or option)

(any disk, boot drive; this disk
becomes the new boot disk)

(any disk, boot drive; first stage boot)

(any disk, boot drive; this disk

becomes the new boot disk)

(boot disk, boot drive)

(slot 6, drive 1). The "boot disk" is

the diskette that was in the boot drive the last time the system was
booted (usually APPLE@: on one-drive systems, and APPLEl: on larger

systems) .

14 APPLE PASCAL OPERATING SYSTEM

Here is where the system files needed by the Command level are
normally found:
Diskette Diskette Diskette
APPLEf: APPLEL : APPLE2:
SYSTEM- APPLE SYSTEM.COMPILER
SYSTEM- PASCAL SYSTEM. PASCAL
SYSTEM-MISCINFO SYSTEM.MISCINFO SYSTEM.LINKER
SYSTEM- COMPILER SYSTEM.ASSMBLER
SYSTEM-EDITOR SYSTEM.EDITOR 650@ - OPCODES
SYSTEM-FILER SYSTEM FILER 6500 .ERRORS
SYSTEM.LIBRARY SYSTEM.LIBRARY
SYSTEM.CHARSET SYSTEM - CHARSET
SYSTEM- SYNTAX SYSTEM. SYNTAX

As you can see, there is little difference between diskettes APPLEf:
and APPLEl: . Diskette APPLEf: is more convenient for editing and
running Pascal programs, especially on one-drive systems, because it
contains the file SYSTEM.COMPILER . However, APPLEf): cannot be used
to cold-boot the system, as it is lacking the file SYSTEM.APPLE .
Diskette APPLEl: contains all the files you need for editing text, and
for cold-booting the system. However, APPLEl: cannot be used to R(un
or C(ompile your text, as it is lacking the file SYSTEM.COMPILER .

On multiple-drive systems, APPLEl: is often kept in the boot drive and
APPLE2: in another drive, thus making all of the operating system
available at all times.

Most system files must be available in one of the disk drives
constantly, from the moment you select the Command option using that
file until you Quit that option or until it terminates. This is true
of the E(dit, C(ompile, and A(ssemble options. These programs

are "overlaid", using segment procedures, so that different portions
of the program are called in from disk as they are needed, to

conserve memory. In such cases, if your system has only one disk
drive you should use the Filer to T(ransfer all the necessary files to
one diskette (usually the system diskette, APPLEf): or APPLEl:) before
you select that option.

Files containing non-overlayed programs are needed only at the moment
the program is loaded into the Apple’s memory. Once they have begun
execution, the source diskette may be removed from its drive.

The F(ile Command and L(ink Command options have been purposely written
without overlaying. The file SYSTEM.FILER is needed at the moment you
select the F(ile option, but not subsequently. You should make sure a
diskette containing SYSTEM.FILER is in one of the disk drives when you

select the F(ile option, but as soon as the new FILER prompt line
appears you may remove that diskette and put in any other.

COMMAND LEVEL 15

Any time the Linker is invoked, SYSTEM.LINKER must be available. However,
when the LINKER prompt line appears, SYSTEM.LINKER is no longer necessary
and the diskette containing SYSTEM.LINKER may be removed from the system
to make room for other diskettes.

More details about using the disks with various commands are given in
the chapters on the Filer, Editor, Compiler, Assembler, and Linker.

THE COMMAND LEVEL OPTIONS

Many of the Command options are explained only briefly below.

This manual’s chapters on the Filer, the Editor, the Compiler, the
Assembler, and the Linker discuss individual Command options in much
greater detail.

F(ILE

Typing F from Command level places you in a level of the system called
the Filer. The Filer contains commands for saving, reading, moving
and deleting the workfile and other disk files. Other commands tell
you what peripheral devices and diskettes are currently available to
the system, and what files are saved on each diskette. Still other
commands let you check diskettes for damage or recording errors, and
let you set the system’s current date and the default volume name.

For more documentation, see this manual’s chapter THE FILER.

E(DIT

Typing E while at the Command level invokes the Editor program. If a
workfile is available, that file is automatically read into the
computer for editing. Otherwise, the Editor asks you to specify a
textfile or begin creating a new one. While in the Editor, you may
create or alter text in the workfile or in any textfile. Various
commands allow you to insert and delete information, find and replace
specified character strings, change the text format, combine files,
etc. On leaving the Editor, you may save your edited text in the
updated workfile or in another specified file. See this manual’s
chapter THE EDITOR for details.

C(OMPILE

Typing C while at the Command level invokes the system Compiler. If a
text workfile is available, that file is automatically read into the
computer for compiling. Otherwise, the Compiler asks you to specify a
source textfile and an object codefile. During compilation, if the
Compiler detects a syntax error, it gives you the option of calling
the Editor, which points out the error and lets you correct it. After
a successful compilation, the resulting P-code is saved in the code
workfile unless you have previously specified another object codefile.
For more details, see this manual’s chapter THE FASCAL COMPILER.

16 APPLE PASCAL OPERATING SYSTEM

A(SSEMBLE

Typing A from the Command level invokes the 65@2 Assembler program.

If a text workfile is available, that file is automatically read into
the computer for assembling. Otherwise, the Assembler asks you to
specify a source textfile and an object codefile. During assembly, if
the Assembler detects a syntax error, it gives you the option of
calling the Editor, which points out the error and lets you correct
ite After a successful assembly, the resulting machine code is saved
in the code workfile unless you have previously specified another
object codefile. For more information, see this manual’s chapter

THE 65@2 ASSEMBLER.

L(INK

Typing L from the Command level starts the system Linker program
explicitly. Unlike the automatic linking initiated by the R(un
command (see description below), this option allows you to link
previously compiled or assembled routines into your program, taking
those routines from SYSTEM.LIBRARY or any other specified library
file. For more information, see this manual’s chapter THE LINKER.

X(ECUTE

After typing X from the Command level, the system asks you to specify
a previously compiled codefile:

EXECUTE WHAT FILE?

You should respond by typing the filename of the compiled P-code
program that you wish to be executed.

It is not necessary to type the suffix .CODE ; that suffix is
automatically supplied by the system if you don’t type it. If you wish
to defeat this feature, in order to execute a program whose filename
does not have a .CODE suffix, type a period (.) after the last
character of the desired filename.

When you have specified a codefile, that file is executed if it is
available, except in the following cases:

1) If all code necessary to execute the Pascal codefile has not yet
been linked in, or if the file is an unlinked assembly codefile, the
message

MUST L(INK FIRST

is displayed (see L(ink, above). You are immediately returned to the
Command level, where you may carry out the necessary linking process
before executing the linked file.

COMMAND LEVEL 17

2) If the specified file contains anything other than the expected
compiled P-code, (for example, text or linked assembly code) you will
get a message similar to this:

MYDISK MYFILE.CODE NOT CODE

3) If the file SYSTEM.LIBRARY is not available in the expected
diskette locations in the boot drive (#4:), or if that file is not
complete, you may be shown the message

REQUIRED INTRINSIC(S) NOT AVAILABLE

This indicates that the program you are executing uses Units or
routines normally found in the file SYSTEM.LIBRARY . These include
routines for long integers, random numbers, transcendental functions,
game paddles, graphics, and file input and output using real numbers
or SEEK.

4) If the file SYSTEM.CHARSET is not available on the boot diskette, a
program using WCHAR or WSTRING from the Unit TURTLEGRAPHICS will be

executed, but no characters will appear on the screen.

It is convenient to X(ecute programs which have already been compiled,
but which are not currently in the workfile. Otherwise, you would

have to enter the Filer, G(et the file (this identifies it as the next
workfile), Q(uit the Filer, and then R(un the program.

The most common operating system functions can be selected directly
from the prompt lines. Functions used more rarely are supplied as
utility programs, which are available through the X(ecute command. By
X(ecuting these utilities, you can format new diskettes, place
compiled or assembled routines in the system library, configure your
system to run with an external terminal, etc. For a complete
discussion of these abilities, see this manual’s chapter UTILITY
PROGRAMS .

R(UN

Typing R from the Command level initiates the R(un sequence, which
combines the Command options C(ompile, L(ink, and X(ecute, as needed.
If a code workfile is available, that file is automatically executed.
Otherwise, the Compiler is automatically called as described above.

If the compilation requires linkage to other routines, the Linker is
automatically invoked and looks for the routines only in the file
SYSTEM.LIBRARY on the boot diskette. After successful compilation and
linking (if those were necessary), the program is executed. See the
descriptions of the options C(ompile, L(ink, and X(ecute for more
details.

Note: Between any two portions of the R(un sequence, the system

returns for an instant to the Command level. Thus the boot diskette
must normally remain in the boot drive throughout the R(un sequence.

18 APPLE PASCAL OPERATING SYSTEM

COMMAND OPTION SUMMARY

Many of these options use the "workfile". The text portion of the
workfile is SYSTEM.WRK.TEXT, created on the boot diskette by the
Editor’s U(pdate command. The code portion of the workfile is
SYSTEM.WRK.CODE, created on the boot diskette by the R(un or C(ompile
options. In addition, the Filer’s G(et command can be used to
designate any other text and/or code file as the workfile for the next
option to use.

F(ile

E(dit

C(ompile

A(ssemble

L(ink

X(ecute

R(un

D (ebug

U(ser restart

I(nitialize

H(alt

Invokes the Filer, which is used to save, move, and
retrieve information stored on diskettes.

Invokes the Eﬁitor, which is used to create and modify
text. Reads the workfile or other specified textfile
into the Apple for editing.

Invokes the Pascal Compiler, which converts the text of a
Pascal program (found in the workfile or other specified
textfile) into executable P-code.

Invokes the Assembler, which converts the text of an
assembly-language subroutine (found in the workfile or
other specified textfile) into 6502 machine language.

Combines external P-code and machine-language
subroutines (found in SYSTEM.LIBRARY or other specified
library codefile) into a Pascal host program (found in
the code workfile or other specified host codefile).

Loads and runs the specified Pascal program codefile.

Executes the current workfile, automatically compiling
and linking (from SYSTEM.LIBRARY) first, if necessary.

Not implemented; do not use this option.

Attempts to execute again the last program or option
that was executed.

Does a '"warm boot" of the system, similar to pressing the
RESET key, but faster.

Does a "cold boot" of the system, like turning the
Apple’s power off and then on again.

20 APPLE PASCAL OPERATING SYSTEM

COMMAND LEVEL 21

CHAPTER 3

INTRODUCTION
Diskfiles Needed
Technical Information
VOLUMES
Input and Output Devices
Specifying a Volume
Shorthand Volume Names
FILES
Diskette File Types
The Workfile
Specifying a File
Filenames
File Size Specification
Shorthand Filename
Wildcards
USING THE FILER
THE FILER COMMANDS
General File-Moving Command
T(ransfer
Copying a Diskette
General Diskfile Commands
M(ake
C(hange
R(emove
K(runch
Z(ero
Workfile Commands
G(et
S(ave
N(ew
W(hat
Information Commands
V(olumes
L(ist Directory
E(xtended Directory List
Disk Upkeep Commands
B(ad Blocks
X(amine
Miscellaneous Commands
P(refix
D(ate
Q(uit

an
1

~J

(@230 @ ANNs NS AN® AUN® ANNS SRS 2
WO W W 00 00 0o

FILER COMMAND SUMMARY

File Specification

System Commands

General File-~Moving Command
General Diskfile Commands
Workfile Commands
Information Commands

Disk Upkeep Commands
Miscellaneous Commands

INTRODUCTION

The Filer portion of the Apple Pascal operating system handles most of
the tasks of transferring information from one place to another. Saving
information on disk, moving and deleting disk files, sending information
to the computer or to the printer -- these are some of the functions of
the Apple Pascal Filer. The Filer is also responsible for telling you
where files have been placed on the diskettes, and what devices and
diskettes are available for your system’s use.

DISKFILES NEEDED

The following diskfile is needed when you type F to select the
Filer, from the Command level:

SYSTEM.FILER (any diskette, any drive; required)

When the FILER prompt line appears, SYSTEM.FILER is no longer
necessary, and the diskette containing SYSTEM.FILER may be removed
from the system to make room for other diskettes. The file
SYSTEM.FILER is normally found on diskette APPLE@: and also on
diskette APPLEl: , so one of those should be in any available disk
drive when you type F from the Command level.

When you use the Filer’s T(ransfer command to transfer information
from one diskette to another, the source diskette for the transfer
must be available in any disk drive before you answer the question
TRANSFER? When you have specified the destination for the transfer,
you will be prompted to insert the destination diskette if it is not
already in a disk drive. This is not a problem with systems that
have two or more disk drives, as both source and destination
diskettes can be placed in available drives at the same time.

The following diskfile is needed when you type Q to Quit the Filer:
SYSTEM.PASCAL (on boot diskette, in boot drive; required)

This file must be on the boot diskette, in the boot drive, and must
occupy the same diskette locations that it occupied when the system was
last booted. This means you should place APPLE@: or APPLEl: (whichever
became your boot diskette when you last booted the system) back into
drive #4: before you type Q to Quit the Filer. If you forget to do
this, the system will tell you to

PUT IN APPLEL:
(if APPLEl: is your boot diskette). The boot drive will start again and

again, until you press RESET or put the correct boot diskette in the boot
drive.

24 APPLE PASCAL OPERATING SYSTEM

TECHNICAL INFORMATION

The Apple Pascal operating system stores information on a diskette in
35 concentric zones or bands, called '"tracks'". The disk drive’s

recording and reading head can be moved in and out, to stop and hover
over each of these 35 different zones of the spinning diskette.

The length of each track on the diskette is divided into 16 segments,
called "sectors'". Once the disk drive’s recording and reading head is
positioned over a given track, that track’s 16 sectors will pass under

the head, one after the other, each time the diskette spins around.

Each sector consists of an "address field" and a ''data field". The
address field tells the system exactly which sector of which track is
about to be read from or written onto by the disk’s read/record head.
The address fields are written on a diskette just once, when the
diskette is formatted for first use. The data field is the portion of
each sector used for storing your data, code, or text information. Up
to 256 bytes of information can be stored in each sector’s data field.

The Apple Pascal system always stores information in two-sector units
called "blocks", each containing 512 bytes (also called "1/2 K" bytes)
of information. Each of a diskette’s 35 tracks can thus store eight
blocks of information, for a total diskette storage capacity of 280
blocks (14 K bytes). While the Filer handles all of this for you
automatically, the lowest-level Pascal routines for storing and
retrieving diskette information are also available, through the system
intrinsics UNITWRITE and UNITREAD (see the Apple Pascal Language
Reference Manual for details).

The 280 blocks on a diskette are not all available for storing your
programs or other files. Blocks ¢ and 1 are reserved for the
bootstrap program. In addition, every diskette must contain a
"directory", which is the system’s only way to recover the other
information stored on that diskette. The directory occupies blocks
2 through 5 on the diskette and may store information for up to 77
different files.

A file is stored on the diskette only in contiguous blocks of
contiguous tracks. Free blocks which are scattered here and there on

the diskette may not be usable to store a large file, but you can use
the K(runch command to combine scattered free blocks into one

contiguous area that can be used.

If the W(rite or U(pdate Editor option is chosen to save a file, the
new version is saved; THEN the old version is deleted. This uses more
space on the diskette, but also insures that at all times during the
saving process at least one version of your file is intact on the
diskette. When the Editor’s S(ave option is chosen, the original file
is destroyed while the new file is being created. This command asks
your permission before it overwrites the old file with the new one.

FILER 25

VOLUMES

INPUT AND OUTPUT DEVICES

A "volume" is any input or output device, such as the screen, the
keyboard, or a disk. A "block-structured" device is one that can have
a directory and files. In the Apple Pascal sytem, the only block-
structured devices are the Disk II floppy disk drives. A non-block-
structured device does not have any internal structure; it simply
produces or consumes a stream of data. The screen and the keyboard,
for example, are non-block-structured.

A device may be referred to by its volume number or by its volume
name. The volume name of a disk drive is the name of the diskette
currently in that disk drive. The following table shows the reserved
volume numbers and volume names that Apple Pascal uses to refer to
various input and output devices.

Volume Volume Description of
Number Name Input/Output Device
#P: (not used)
#l: CONSOLE: Screen and keyboard with echo
#2: SYSTERM: Reads keyboard without echoing it
#3: (not used)
it <diskette name>: Boot disk drive (slot 6, drive 1)
#5: <diskette name>: 2nd disk drive (slot 6, drive 2)
#6: PRINTER: Printer (card in slot 1)
#7: REMIN: Remote input (card in
#8: REMOUT : Remote output slot 2)
#9: <diskette name>: 5th disk drive (slot 4, drive 1)
#1@: <diskette name>: 6th disk drive (slot 4, drive 2)
#11: <diskette name>: 3rd disk drive (slot 5, drive 1)
#12: <diskette name>: 4th disk drive (slot 5, drive 2)

VOLUME NAMES AND NUMBERS

SPECIFYING A VOLUME

Many Apple Pascal operating system commands require you to specify at
least one volume. A complete volume specification consists of the
volume name or the volume number for the desired device, followed

by a colon (:). The colon is very important: it tells the system that
the name or number preceding the colon is a volume specification, and
not a diskfile’s filename. A stand-alone diskette volume name or number
(not followed by a filename) tells the Filer that it is to act in some

26 APPLE PASCAL OPERATING SYSTEM

appropriate way on the diskette AS A WHOLE, and not merely on a certair
file on that diskette. If a volume number is specified that is not
followed by a filename, the colon following the volume number is

optional. The following diagram defines the syntax of volume
specification:

S

VOLUME
NUMBER

VOLUME-SPECIFICATION SYNTAX

The table of VOLUME NAMES AND NUMBERS, given earlier, shows the volume
numbers used to specify various input and output devices, and the
reserved volume names used to specify non-block-structured devices such
as a printer. The volume name for a block-structured volume (a disk
drive) is the name that you have assigned to the diskette in that
drive. If you specify the volume number of a disk drive, the Filer
automatically converts that specification to the volume name of the
diskette found in that drive. A diskette’s volume name must be seven
or fewer characters long and may not contain an equals sign (=),
dollar sign ($), question mark (?) or comma (,).

Note: Never issue operating system commands when two diskettes with

the same volume name are in the system. Even if you specify the
correct drives by their volume numbers, the system will often operate
on the wrong diskette (usually the diskette in the higher-numbered
drive). If the operation involves updating the diskette’s directory,
the system may store the wrong diskette’s directory onto your diskette,
making the files originally on that diskette unavailable. The same
problem may occur if you replace the diskette in a drive with another
diskette with the same volume name.

Moral: Make SURE the diskettes you use have DIFFERENT volume names.

FILER 27

SHORTHAND VOLUME NAMES

An asterisk (*) can be used to specify the volume name of the
"System" or "Boot" diskette, the diskette which was in the boot drive
(volume #4:) when the Apple Pascal system was last booted. The
Filer’s V(olumes command reports the asterisk default volume name as
the "ROOT VOLUME".

If a filename is specified with no preceding volume name or number, or
if a volume is specified with only a colon (:), the Apple Pascal
system supplies the volume name of the "Prefix" volume. Booting the
system sets the Prefix to the name of the boot diskette. Thereafter,
the Prefix default volume name can be changed at any time by using the
Filer’s P(refix command. Usually, you will set this to the volume name
of the diskette with which you are currently working, to save much

typing. However, the Prefix can also be set to other devices, such as
the PRINTER: .

FILES
DISKETTE FILE TYPES

A "file" is a collection of information which is stored on the
diskette and which may be referred to by a filename. Each diskette
has a '"directory" which contains the filenames and locations of each
file on the diskette. The File handler, or Filer, uses the
information contained in the diskette directory to manipulate files.

The use of a file is determined by the file’s '"type'", which specifies
the kind of information stored in the file. You and the computer can
both tell the file’s type when the file is created by looking at a
portion of the filename called the "suffix'". Here are the filename
suffixes normally recognized by the computer, and the associated file
types as shown in the rightmost column of an E(xtended directory listing:

Suffix File Type E(xtended directory
listing

«TEXT Human-readable text TEXTFILE

.CODE Machine-executable code CODEFILE

DATA Data DATAFILE

«BAD When created by E(xamine BAD FILE

command, an immmovable file
covering a physically
damaged area of a diskette

« INFO (not used) INFOFILE
+«GRAF (not used) GRAFFILE
-FOTO (not used) FOTGFILE

28 APPLE PASCAL OPERATING SYSTEM

For instance, a file named MYFILE.TEXT would be treated by the
computer as a file containing human-readable text. For more
information concerning the internal format of the information
contained in different types of files, see Appendix C.

Under some circumstances (after C(hanging the file’s name, for example)
the file’s actual type may not agree with it’s filename suffix. The
actual type of the file may be determined by examining the rightmost
column of the E(xtended directory listing for the file.

THE WORKFILE

The workfile is a scratch-pad diskette copy of the file currently being
worked with. It is automatically taken as the default file by the
Command-level options R(un, E(dit, C(ompile, A(ssemble, and L(ink. The
workfile can be a single diskette file, or it can consist of two or more
diskette files with the same basic filename but different suffixes.
Typically, the version with the .CODE suffix is the compiled or
assembled version of the file with the .TEXT suffix. Operating system
commands for dealing with the workfile automatically choose the correct
version of the file.

When a workfile is Edited and Updated, the system stores the new text
version on the boot diskette, under the filename SYSTEM.WRK.TEXT . When
this new text workfile is compiled or assembled, the resulting code
version of the workfile is stored on the boot diskette under the
filename SYSTEM.WRK.CODE . If you create (by Edit and Update) a new
text version SYSTEM.WRK.TEXT , the old code version SYSTEM.WRK.CODE is
automatically erased . You may then create a new code version

corresponding to the new text version, by compiling or assembling the
workfile.

From the Filer, you can erase the workfile (you must do this before you
can Edit, Run, Compile, or Assemble any new file), save the workfile,
or designate the next file to be the workfile. These Filer commands
automatically operate on all available versions of the workfile.

SPECIFYING A FILE

Many Apple Pascal operating system commands require you to specify at
least one file. A complete file specification consists of the volume
name or number for the desired device, followed by a colon, followed --
if you are specifying a disk file =- by the filename of the particular
disk file desired. This diagram defines file specification syntax:

—>

4{% FILE NAME
> VOLUME
SPECIFICATION

SUBSET _f SUBSET j
SPECIFYING SPECIFYING

STRING 1 STRING 2

FILER 29

Filenames

Once a disk device is specified, by its volume number or by the name

of the diskette in that drive, any file on that diskette may be
specified by its filename. A legal diskette filename can consist of

up to 15 characters. In order for the file to be Run, the last five
characters must be .TEXT or .CODE . Without a .TEXT or a .CODE suffix,
the file may be executed but it may not be put in the workfile. Lower-
case letters typed into a filename are translated to upper-case, and
spaces and non-printing characters are removed from the filename.

All characters are legal in filenames. However, from the keyboard you
should not type filenames that include the following characters:

dollar sign ($), left square bracket ([), equals sign (=), question mark
(?), RETURN, and the CTRL characters C, F, M, S, U, and @.

WARNING: The Filer will not be able to access filenames containing the
characters dollar sign ($), equals sign (=), question mark
(?), or comma (,).

File Size Specification

It is sometimes possible to specify the size of a disk file immediately
after the filename, by enclosing in square brackets [like this] the
number of diskette blocks the file is to occupy. There are also two
shorthand file size specifications: [@] says the file is to occupy all
of the largest unused area, while [*] says the file is to occupy all of
the second-largest area or half of the largest area, whichever is
larger. If no file size specification is given, the usual default is
[#1. The file size specification is primarily useful in the Filer
commands T(ransfer and M(ake. However, it can also be used in the
Assembler when specifying the output codefile, where [*] is the file-
size default.

Shorthand Filename

The T(ransfer command will accept the dollar sign ($) as its SECOND
specified filename. This means that the transferred copy of the file
is to have the same filename as the original file.

Wildcards

The wildcard characters, equals sign (=) and question mark (?),
are used to specify a subset of the filenames on a diskette, by
indicating the portion of a filename which may be ignored or which
remains unchanged. The Filer performs the requested action on all
files whose filenames meet the subset specification. The form of a
wildcard filename specification is as follows:

<stringl>=<string2> or <stringl>?<string2>

30 APPLE PASCAL OPERATING SYSTEM

where <stringl> and <string2> are sometimes called the "subset-
specifying strings'". The subset-specifying strings indicate the
portion of a filename which may NOT be ignored or which is to be
changed. For example, the filename subset specification

MYDISK:DOC=TEXT

tells the Filer to perform the requested action on all of MYDISK:’s
files whose filenames begin with the string DOC and end with the
string TEXT . If a question mark is used instead of an equals sign

MYDISK:DOC?TEXT

the effect is identical except that the Filer requests verification
before affecting each file in the specified subset. Instead of a "Y" or
an "N" response, you may press the ESC key. This will return you to

the outer level of the Filer.

Only one wildcard may be used in a filename specification:
MYDISK:DO?TE?T or MYDISK:=TE=

are NOT legal specifications, because one of the subset-specifying
strings contains the forbidden filename character ? or = . An

attempt to use the first specification shown above will cause the

message

Tﬁ}T SCAN STRING - ILLEGAL FORMAT

The Filer commands T(ransfer and C(hange both require two file

specifications. If the first specification contains a wildcard (and
the -second specification is for a disk volume), the second

specification must also contain a wildcard. If you forget, you will
be given the message

BAD FORM (WILD <TO> NON-WILD) CARD

The only legal exception to this rule occurs when T(ransfer is given the
$ as the second filename specification.

Either or both of the subset-specifying strings may be empty. For
example, a filename subset specification such as =TEXT or DOC= or

even just = 1is valid. This last case, where both subset-specifying
strings are empty, is interpreted by the Filer to specify every
filename, so typing = or ? alone causes the Filer to perform the

appropriate action on every file in the specified diskette’s
directory. This feature can sometimes be used to act on a file whose
filename is not '"recognized" by Filer commands (because of illegal
characters in the filename, or a slightly damaged directory, say).

The subset-specifying strings may not "overlap'". For example, the
filename subset specified by GOON=NS would not include the filename
GOONS, whereas GOON=S would be a valid (although pointless)
specification for the filename GOONS .

FILER 31

EXAMPLE:

Suppose you are given this directory for the diskette volume named MYDISK.

NAUGHTYBITS 6 23-JUN-76
MOLD.TEXT 4 29-JAN-57
USELESS.CODE 1¢ 12-MAY-78
MOLD.CODE 4 29-JAN-57
NEVERMORE . TEXT 12 5-APR-74
GOONS 5 1¢-SEP-52

After typing R for R(emove, you will see this message:
REMOVE WHAT FILE ? or REMOVE ?

Response 1: MYDISK:N=

Typing the above response generates the message:

MYDISK:NAUGHTYBITS -—> REMOVED
MYDISK:NEVERMORE .TEXT ——> REMOVED
UPDATE DIRECTORY ?

At this point you can type Y to remove all the files marked REMOVED,
or you can type N , in which case the files will not be removed. The
Filer always requests verification before completing any wildcard removes.
Response 2: MYDISK:N?
Typing this response generates the message:

REMOVE NAUGHTYBITS ?
After you type a response (Y or N), the Filer asks:

REMOVE NEVERMORE.TEXT ?

Again you may type a response (Y or N), and if you have given any Y
responses, the Filer asks:

UPDATE DIRECTORY ?

As with the previous pattern, this gives you one last chance to change
your mind before the files are finally removed.

EXAMPLE:

Again, suppose you have a diskette MYDISK: with the same directory as
in the previous example. After typing L for L(dir (which means List
the diskette’s Directory), you will see this message:

DIR LISTING OF WHAT VOL ? or DIR LISTING OF ?

Response: MYDISK:=TEXT

32 APPLE PASCAL OPERATING SYSTEM

Typing this response causes the Filer to list

MOLD.TEXT 4 29-JAN-57
NEVERMORE.TEXT 12 5-APR-74

USING THE FILER

Type F at the Command level to enter the Filer and the following
prompt is displayed:

Filer: G(ET, S(AVE, W(HAT, N(EW, L(DIR, R(EM, C(HNG, T(RANS, D(ATE, Q(UIT
or
FILER: G, S, N, L, R, C, T, D, Q

Typing ? in response to this prompt displays more Filer commands:

FILER: B(AD-BLKS, E(XT-DIR, K(RNCH, M(AKE, P(REFIX, V(OLS, X(AMINE, Z(ERO
or
FILER: W, B, E, K, M, P, V, X, Z

The letters and numbers enclosed in brackets which frequently appear at
the end of prompt lines indicate the version number of the portion of
the program with which you are working.

An individual Filer command is invoked by typing the first letter of

the command option as it appears in the prompt line. For example,
typing S would invoke the Save command.

In the Filer, answering a Yes/No question with any character other
than Y constitutes a "No" answer. With most questions, pressing the
RETURN key as your only response will terminate that command and
return you to the outer level of the Filer.

For each command requiring a file specification, refer to the file
specification diagram earlier in this chapter. 1In many cases, the
entire file specification is not necessary, and in some cases, certain
parts of the file specification are not valid. Terminate the
specification by pressing the RETURN key. See the required command in
the following section for more details.

Whenever a Filer command requests a file specification, you may
specify as many files as desired, by separating the file
specifications with commas, and terminating this "file list" by
pressing the RETURN key. Commands operating on single filenames will
keep reading filenames from the file list and operating on them until
there are none left. Commands operating on two filenames (such as
L(ist-directory, C(hange, and T(ransfer) will take file
specifications in pairs and operate on each pair until only one or
none remains. If one filename remains, the Filer will prompt for the
second member of the pair. If an error is detected at any point in
the list, the remainder of the list will be discarded.

FILER 33

THE FILER COMMANDS

34 GENERAL FILE-MOVING COMMAND
34 T(ransfer
42 copying a diskette

44 GENERAL DISKFILE COMMANDS

44 M(ake

45 C(hange

48 R(emove

49 K(runch

50 Z(ero

51 WORKFILE COMMANDS
51 G(et

53 S(ave

55 N(ew

55 W(hat

55 INFORMATION COMMANDS

55 V(olumes

56 L(ist directory

59 E(xtended directory list

61 DISK UPKEEP COMMANDS
61 B(ad blocks
62 X(amine

65 MISCELLANEOUS COMMANDS
65 P(refix

65 D(ate

66 Q(uit

GENERAL FILE-MOVING COMMAND

T(ransfer

Copies the specified file to the given destination.

This command requires that you type two file specifications, omne for
the source file and one for the destination file, separated with
either a comma or a RETURN . Wildcards are permitted, and size
specification information is recognized for the destination file.

The source device or diskette must be available (the source diskette
must be in one of the disk drives) when the Filer reads your source-
file specification, but a destination diskette may be inserted later,
in response to a prompting message.

34 APPLE PASCAL OPERATING SYSTEM

<

Note: Do not attempt to transfer information between different diskettes

having the same volume name. Instead, C(hange the name of one of the
diskettes, at least for the duration of the transfer.

EXAMPLE:

Suppose you wish to transfer the file FARKLE.TEXT from the diskette
named MYDISK: to the diskette named BACKUP: .

Prompt: TRANSFER WHAT FILE ? or TRANSFER ?
Response: MYDISK:FARKLE.TEXT

When you press the RETURN key, the system checks to be sure that the
specified source diskette is in one of the disk drives. If MYDISK: is
not in any drive, you will see the message

MYDISK:FARKLE.TEXT
NO SUCH VOL ON-LINE <SOURCE>

If the source diskette is found in a drive, the system then checks to
be sure the specified file is on that diskette. If the diskette
MYDISK: is in a drive, but it has no file named FARKLE.TEXT , you will
see the message

MYDISK:FARKLE.TEXT
FILE NOT FOUND <SOURCE>

In either case, you will be returned to the outer Filer level. Just
insert the correct source diskette in any drive and type T again.

However, let’s assume the system succeeds in finding the source
diskette and file. The dialogue continues, asking you to specify the
destination for the transfer:

Prompt: TO WHERE ?

Response: BACKUP:NAME.TEXT

(Note: The file’s source and destination specifications could also
have been given both in the first response, separated by a comma.)

When you press the RETURN key, the system checks to be sure the
destination diskette is in a disk drive. If it is, the transfer
begins. If it is not, there is a pause, and then you will be
prompted

FILER 35

PUT IN BACKUP:
TYPE <SPACE> TO CONTINUE

Put the correct destination diskette in any available drive and press

the spacebar. On two-drive systems, you will normally put the source
diskette in one drive and the destination diskette in the other

drive. On one-drive systems, you will have to remove the source

diskette from the disk drive, and then put the destination diskette in
the drive.

IMPORTANT: On a single-drive system, DO NOT remove your source
diskette until you are prompted to insert the destination diskette.
You will be given the following message when it is time to exchange
diskettes in the drive:

Prompt: PUT IN BACKUP:
TYPE <SPACE> TO CONTINUE

When you see that message, you should remove the source diskette from

the drive, insert the correct destination diskette, and press the
spacebar. If the specified file is large, you may have to switch

the source and destination diskettes several times, until the transfer
is completed. Just follow the prompting messages.

Switching the diskettes is not usually necessary on systems with two
or more disk drives, as the source and destination diskettes can be in
different drives at the same time. However, the one-drive procedure
will also work on multiple-drive systems.

When the transfer is complete, the Filer will give you the message

MYDISK:FARKLE.TEXT
——-> BACKUP :NAME.TEXT

The Filer has made a copy of FARKLE.TEXT as found on the diskette
named MYDISK: , and has stored that copy on the diskette BACKUP: under
the filename NAME.TEXT .

Note: Once the Filer has been summoned, it resides entirely in the
computer’s memory. On a one-drive system, you can summon the Filer

and then remove the system diskette from the drive in order to insert
the source diskette for the Transfer. On a two-drive system, you can

summon the Filer, and then remove all system diskettes from the drives
in order to use both drives for source and destination diskettes
during a transfer. This will save you much unnecessary switching of
diskettes when copying a large file. Just remember to replace the

system diskette in the boot drive (volume #4:) before Quitting the
Filer.

It is often convenient to transfer a file to another diskette without

changing its filename. To make this easier, the Filer lets you use
the dollar-sign character ($) as a shorthand for 'same name", to
replace the filename in the destination file specification. 1In the

36 APPLE PASCAL OPERATING SYSTEM

above example, if you had wished to save the file FARKLE.TEXT on

diskette BACKUP: under the same filename FARKLE.TEXT, you could have
typed:

MYDISK:FARKLE.TEXT,BACKUP: $

72\
%
WARNING: Avoid typing the second file specification with the filename

completely omitted! For example, a response to the Transfer prompt of
the form:

MYDISK:FARKLE.TEXT,BACKUP:

generates the message:
DESTROY BACKUP: ?

Typing the response Y causes the directory of BACKUP to be wiped out!

A file can be transferred from a diskette to a different place on the
same diskette by giving the same volume name for both source and
destination file specifications. This is frequently useful when the
you wish to relocate a file on the diskette. Specifying the number of
blocks desired will cause the Filer to copy the file in the first
(lowest block numbers) unused diskette area of at least that size. If
no size specification is given, the file is always written in the
largest unused area.

If you specify the same filename for both source and destination on a
same—-diskette transfer, then the Filer rewrites the file to the size-
specified area (the largest unused area, if not specified), and
removes the original file.

EXAMPLE:

Prompt: TRANSFER WHAT FILE ? or TRANSFER ?
Response: MYDISK:QUIZZES.TEXT,MYDISK:$[20]

Typing this response would cause the Filer to rewrite QUIZZES.TEXT
on MYDISK: in the first area of at least 2@ blocks (looking from
block #) and then to remove the previous version of QUIZZES.TEXT .

Note: do not use this feature for re-naming a file. The C(hange
command is designed for that purpose, and is less risky.

If you give the same volume NUMBER for both source and destination
file specification, the system assumes you are going to change
diskettes in that drive. You will see the message

INSERT DESTINATION DISK
TYPE <SPACE> TO CONTINUE

FILER 37

The same assumption is made any time you give a volume number, in the
destination file specification, that specifies the same drive occupied
by the source diskette.

Files may be transferred to such volumes as CONSOLE: (for a quick
screen listing of a file) and PRINTER: (to print a file), as well as
to a disk, by specifying the appropriate volume name or number (see
VOLUMES, earlier in this chapter) in the destination file
specification. A filename on a device other than a disk is ignored.

It is generally a good idea to make certain that a non-disk device is
on-line (actively connected to the system and turned on) when you
attempt a Transfer to that device. If it isn”t, the system may
"hang", and you will have to press the RESET key to recover.

EXAMPLE:

Prompt: TRANSFER WHAT FILE ? or TRANSFER ?

Response: FARKLE.TEXT

Prompt: TO WHERE ?

Response: PRINTER:

Typing the above responses will cause the file FARKLE.TEXT , as found
on the Prefix diskette volume, to be printed (assuming a printer is
properly connected to your system).

You may also transfer from input devices other than disks, such as the
keyboard. Filenames accompanying a non-disk volume name or number are
ignored.

EXAMPLE:

Prompt: TRANSFER WHAT FILE ? or TRANSFER ?

Response: CONSOLE:

Prompt: TO WHERE ?

Response: PRINTER:

After these responses, you can use your keyboard as a typewriter.
Nothing will appear on the printer until you type the "End-Of-File"
character, CTRL-C (Note some printers require you to press the

RETURN key before pressing CTRL-C). Then all your typing will be
sent to the printer.

38 APPLE PASCAL OPERATING SYSTEM

The wildcard capability is allowed in the T(ransfer command. When
using wildcards, the subset-specifying strings in the source filenames
will be replaced by the analogous strings (called "replacement
strings") in the destination filenames. Any of the subset-specifying

or replacement strings may be empty. The portion of each source
filename accounted for by the = or ? wildcard character is

reproduced unchanged in the corresponding destination filename.
Remember that the Filer considers the one-character, wild-card-alone
file specification (= or ?) to specify every file on the volume.
EXAMPLE:
Suppose the Prefix diskette volume MYDISK: contains these files:
PAUCITY
PARITY
PENALTY
Further, suppose the destination diskette is named ODDNAMZ:
Prompt: TRANSFER WHAT FILE ? or TRANSFER ?
Response: P=TY,ODDNAMZ:V=S
Typing this response would cause the Filer to reply:
MYDISK:PAUCITY

——-> ODDNAMZ : VAUCIS
MYDISK:PARITY

—=> ODDNAMZ:VARIS
MYDISK:PENALTY
—=> ODDNAMZ: VENALS
EXAMPLE:
Suppose the Prefix diskette volume MYDISK: contains these files:
CHAP1.TEXT
CHAP2.TEXT
CHAPTER-3.TEXT
CHAP4.TEXT
Further, suppose the destination diskette is named BACKUP:
Prompt: TRANSFER WHAT FILE ? or TRANSFER ?
Response: C=XT
Prompt: TO WHERE ?

Response: BACKUP:OLDC=XT

FILER 39

Typing these responses would cause the Filer to reply:

MYDISK:CHAP1.TEXT

—=> BACKUP:OLDCHAP1.TEXT
MYDISK:CHAP2.TEXT

—=> BACKUP:OLDCHAP2.TEXT
MYDISK:CHAPTER-3.TEXT

-=> NOT PROCESSED
MYDISK:CHAP4.TEXT

==> BACKUP:0LDCHAP4.TEXT

On the third attempted transfer, the destination filename would have
been OLDCHAPTER-3.TEXT, which exceeds the l5-character limit for
filenames. Therefore, that file was 'NOT PROCESSED" . If all of the
destination filenames exceed 15 characters, each source file is marked
"NOT PROCESSED" and this additional message is given:

BAD DEST FOR FILES FOUND

Using the single character = as the source filename specification
will cause the Filer to attempt to transfer every file on the source
diskette, adding these files to the information that was already
stored on the destination diskette. You can use this feature to
transfer all the information on one diskette to another diskette,
withOUT destroying any information already on the destination
diskette. (If you wish to make an exact copy of the source diskette,
completely erasing any information that was formerly stored on the
destination diskette, please refer to the material later in this
section on volume-to-volume transfers: COPYING A DISKETITE .)

Using the single character = as the destination filename

specification will have the effect of replacing any subset-specifying
strings in the source specification with nothing.

A brief reminder: in any wildcard specification, the single character
? may be used in place of = . The only difference is that a ? in
either specification (or both) causes the Filer to ask you for

verification before each file is transferred. This takes somewhat
longer, but you are more certain of transferring only the files you

intended to transfer.

A source or a destination file specification must contain only one
wildcard character. A specification such as

MYDISK: ?UGH?

is NOT a legal specification. An attempt to use such a specification
as either the source or the destination of a transfer will cause the
jargon message

SCAN STRING - ILLEGAL FORMAT

40 APPLE PASCAL OPERATING SYSTEM

If the source file specification contains a wildcard character, and
the destination device is a disk, then the destination file
specification must also contain a wildcard character. If you fail to

have a wildcard character in both source and destination specification
(it need not be the same wildcard), you are given the message

BAD FORM (WILD <TO> NON-WILD) CARD

and your transfer is terminated. The only exception to this occurs

when you use the dollar sign ($) shorthand for the destination file
specification.

EXAMPLE:
Suppose the diskette MYDISK: contains the following files:

CHAPTER1.TEXT
CHAPTER14B.TEXT
INTRO.TEXT

Further, suppose you wish to transfer the files CHAPTER1.TEXT and
INTRO.TEXT to the diskette BACKUP: , retaining the same file names on
the backup diskette.

Prompt: TRANSFER ?
Response: MYDISK:?.TEXT,BACKUP:$

Typing this response would cause the screen to clear, and then the
following message would appear:

TRANSFER CHAPTER1.TEXT ?

Since you wish to transfer CHAPTER1.TEXT , type a Y for "Yes". A
copy of the file CHAPTER1.TEXT would then be transferred from MYDISK:
to BACKUP: , and the Filer would proceed to ask if you wish to
transfer the next file whose name ends in .TEXT . The complete
dialogue might appear as follows:

TRANSFER CHAPTERI.TEXT ? Y

MYDISK:CHAPTERI.TEXT
—-> BACKUP:CHAPTER1.TEXT

TRANSFER CHAPTER14B.TEXT ? N
TRANSFER INTRO.TEXT ? Y

MYDISK:INTRO.TEXT
—=> BACKUP:INTRO.TEXT

Instead of a "Y" or "N" response, you may press the ESC key. This
will return you to the outer level of the Filer.

FILER 41

Copying a Diskette

You can copy an entire diskette. The file specifications for the
source and for the destination should each consist of a disk volume
name or number only. This method of transferring the contents of a
source diskette volume onto a destination diskette volume erases any
previous contents that were on the destination diskette so that it
becomes an exact, literal copy of the source diskette. After copying,

the destination diskette has the same volume name as the source
diskette.

EXAMPLE:

Suppose you desire an extra copy of the diskette MYDISK: and you are
willing to sacrifice diskette EXTRA:

Prompt: TRANSFER WHAT FILE ? or TRANSFER ?
Response: MYDISK:,EXTRA:

Prompt: TRANSFER 28§ BLOCKS ? (Y/N)
Response: Y

Note: To copy an entire diskette (each diskette used by the Apple

Pascal system contains 28(blocks), you will always type the response
Y . Each diskette’s directory tells your computer how many blocks are

on that diskette. If your system ever gives a message such as

TRANSFER 11¢@ BLOCKS? (Y/N)

(or any number other than 28f blocks), the diskette’s directory is
probably damaged.

Prompt: DESTROY EXTRA: ?

WARNING: If you type Y , the directory (and therefore, your access to
the contents) of EXTRA: will be destroyed! The diskette named EXTRA:
will then become an exact copy of MYDISK: , even having the same
volume name. Often this is desirable for backup purposes, since it is

relatively easy to copy a diskette this way, and the volume name can
be changed (see the C(hange command) if desired. An N response will
return you to the outer level of the Filer.

Although it is certainly possible to transfer one diskette volume to
another using a single-disk-drive system, it is a fairly tedious
process, since a great deal of diskette exchanging is necessary for
the complete transfer to take place.

42 APPLE PASCAL OPERATING SYSTEM

IMPORTANT: On a single-drive system, DO NOT remove your source

diskette until you are prompted to insert the destination diskette.

You will be given the following message when it is time to exchange
diskettes in the drive:

Prompt: PUT IN EXTRA:
TYPE <SPACE> TO CONTINUE

You should now remove the source diskette from the drive, insert the
correct destination diskette, and press the spacebar. The Filer will
soon tell you

Prompt: PUT IN MYDISK:
TYPE <SPACE> TO CONTINUE

and so on, back and forth, until you have exchanged the source and
destination diskettes in the drive about 2@ times. Finally, the
Filer will give you the welcome message:

MYDISK: —-> EXTRA:
to tell you the transfer is completed.

Note: Once the Filer has been summoned, it resides entirely in the
computer’s memory.

One-drive note: On a one-drive system, you can summon the Filer and
then remove the system diskette from the drive in order to insert the

source diskette for the transfer. Just remember to replace the system
diskette in the boot drive (volume #4:) before Quitting the Filer.

Two-drive note: On a two-drive system, you can summon the Filer, and
then remove all system diskettes from the drives in order to use both
drives for source and destination diskettes during a transfer. This
will save you much unnecessary switching of diskettes when copying an
entire diskette. Again, remember to replace the system diskette in
the boot drive (volume #4:) before Quitting the Filer.

Another one-drive note: One-drive users cannot make a volume-to-volume
copy onto a destination diskette that has the same volume name as the
source diskette. Instead, before trying to make the copy, use the
Filer’s C(hange command to change the volume name of either diskette,
or use the Z(ero command to rename the destination diskette while
erasing its directory.

Another multi-drive note: In multiple-drive systems, the source and

destination diskettes are usually placed in different drives. If the
two diskettes have the same volume name, you can refer to each

diskette by its drive volume number, instead of by name. By their

different drive numbers shall the Filer know them. Note that this full=-
disk copy is an exception to the rule which forbids two diskettes with

the same name in the system.

FILER 43

GENERAL DISKFILE COMMANDS

M(ake

Creates a diskette directory entry with the specified filename.

This command requires you to type a file specification. Wildcard
characters are not allowed. The file size specification option is
extremely helpful, since, if it is omitted, the Filer creates the
specified file by consuming the largest unused area of the disk. The
file size is determined by following the filename with the desired

number of blocks, enclosed in square brackets [and] . Some special
cases are:

[@] - Equivalent to omitting the size specification. The file
is created using all of the largest unused area.

[*] - The file is created using all of the second largest area,
or half of the largest area, whichever is larger.

Files with filenames ending in .TEXT must occupy at least four blocks,
and must occupy an even number of blocks (see this manual’s appendix
FILE FORMATS for details). An attempt to M(ake a .TEXT file with fewer

than four blocks results in the message NO ROOM ON VOL. If you M(ake a
.TEXT file specifying an odd number of blocks, the file will actually be
made with one fewer blocke.

EXAMPLE:
Prompt: MAKE WHAT FILE?
Response: MYDISK:FARKLE.TEXT [28]

This response creates the dummy file FARKLE.TEXT on the volume MYDISK:
in the first unused 28-block area encountered.

The M(ake command is commonly used to reserve an area on the disk for
some future use. The created file’s name may serve as a reminder that

you need to write a section by that name, and save you some space on the
diskette to do so. It also prevents use of that space by other files.

When you make a file, you simply create a diskette directory entry,
without in any way changing the actual information stored on the
portion of the diskette to which that directory entry refers. If you
forget that the file is a "dummy" file, you can G(et the file (if it
ends in .TEXT) and attempt to read into the Editor whatever information
may have been stored on the diskette in that location. Usually, this

will just be nonsense, or part of some file you never wanted to see
again, but occasionally it can be useful.

Suppose you have just R(emoved a 19 block file, which started at block
134. An E(xtended directory list of the diskette may show the "hole"

44 APPLE PASCAL OPERATING SYSTEM

where that file used to be, as a 19 block <unused> area starting at
block 134. If you can now M(ake a file (of any name) that exactly
occupies the blocks the R(emoved file occupied, the new file will
contain exactly the same information the Removed file contained. Thus,
if you know enough information about the location of a file before it
was Removed, and if nothing has been written over that area of the
diskette since the removal, you can sometimes use the M(ake command to
recover a Removed file.

C(hange
Changes a diskette file’s filename, or changes a diskette’s volume name.

This command requires two file specifications. The first of these
specifies the file or the volume whose name is to be changed; the
second specification shows the new filename or the new volume name.
The first specification is separated from the second specification
either by a comma (,) or by pressing the RETURN key. If the first
file specification contains a filename, any volume name or number in
the second file specification is ignored, since obviously the "old
file" and the "new file" are on the same volume! Size specification
information is ignored.

If you change the name of the Prefix diskette, the volume name that
the system supplies as Prefix is also changed. Similarly, if you
change the name of the "system" or '"root" diskette, the name that the

system supplies for the asterisk (*) volume-specifier is also changed.
EXAMPLE:

The file F5.TEXT is on the diskette in disk drive volume #5:
Prompt: CHANGE WHAT FILE ? or CHANGE ?

Response: #5:F5.TEXT

When you press the RETURN key, the dialogue continues:
Prompt: CHANGE TO WHAT ?

Response: HOOHAH

Typing the above response changes the name in the directory from
F5.TEXT to HOOHAH . Filetypes (such as TEXTFILE or CODEFILE) are
originally determined by the filename’s suffix (such as .TEXT or

.CODE). The C(hange command does not affect the filetype, but it
also does not automatically place the correct standard filetype suffix
after the new filename. In the above case, HOOHAH would still be listed
as type TEXTFILE by an E(xtended directory list. However,

since the G(et command searches for the suffix .TEXT in order to
identify a textfile as the workfile, you would have to C(hange the
filename HOOHAH to HOOHAH.TEXT before that file could be used as the
workfile.

FILER 45

Wildcard specifications are legal in the C(hange command. If a
wildcard character is used in the first file specification, then a
wildcard must be used in the second file specification. The subset-
specifying strings in the first file specification are replaced by the
analogous strings (henceforward called replacement strings) given in
the second file specification. The Filer will not change the filename
if the change would have the effect of making the filename too long
(more than 15 characters).

EXAMPLE:
The diskette named MYDISK: contains these files:

CHAP1.TEXT
CHAP2.TEXT
CHAPTER-3.TEXT
CHAP4.TEXT

Prompt: CHANGE WHAT FILE ? or CHANGE ?
Response: MYDISK:C=XT,OLDC=XT

After you typed the above response (the two parts of the response were
separated by a comma, this time, but you could also press the RETURN
key to separate the responses), the Filer would then indicate the
following name changes. Only the files’ filenames are changed; the
contents of the files themselves are left unmodified.

MYDISK:CHAP1.TEXT

—--> OLDCHAP1.TEXT
MYDISK:CHAP2.TEXT

--> OLDCHAP2.TEXT
MYDISK:CHAPTER-3.TEXT

—-> NOT PROCESSED
MYDISK:CHAP4.TEXT

—-> OLDCHAP4.TEXT

In the third attempted name change, the "destination" filename would have
been OLDCHAPTER-3.TEXT, which exceeds the l5-character limit for filenames.
Therefore, that file was '"NOT PROCESSED" . If all of the "destination"
filenawes exceed 15 characters, this additional message is given:

BAD DEST FOR FILES FOUND
The subset=-specifying strings may be empty, as may the replacement

strings. The Filer considers the one-character file specification =

(where both subset-specifying strings are empty) to specify every file
on the diskette.

46 APPLE PASCAL OPERATING SYSTEM

EXAMPLES:

Prompt: CHANGE WHAT FILE ? or CHANGE ?
Responsefl: =,Z=Z

Typing this response would cause every filename on the Prefix
diskette to have a Z added before the first character and after the
last character.

Response#2: 2Z=Z,=

Typing this response would (again, on the Prefix diskette) erase the
terminal and initial Z from each filename that possessed both.

Suppose the Prefix diskette contained these filenames:

THIS.TEXT
THAT . TEXT

Response#3: T=T,=

Typing response #3 would result in changing THIS.TEXT to HIS.TEX ,
and THAT.TEXT to HAT.TEX .

Responsef#4: =.TEXT,OLD.=

Typing this response would add the prefix OLD. to every filename on
the Prefix diskette, and remove the suffix .TEXT from every filename.

CHAP1.TEXT would thus become OLD.CHAPl1 , and CHAP2.TEXT would become
OLD.CHAP2 . This would quickly mark all your old versions of a file

and simultaneously make those versions safe from accidental access by
the G(et command.

The diskette’s volume name may also be changed, by specifying the
current diskette volume name or number and (after a comma or RETURN) a
new volume name for the diskette.

EXAMPLE:

Prompt: CHANGE WHAT FILE ? or CHANGE ?

Response: NOTSANE:,WRKDISK:

Typing this response would cause the system to give this message:

NOTSANE: —> WRKDISK:

showing that the diskette named NOTSANE: has been renamed WRKDISK:.

FILER 47

R(emove

Removes file entries from the directory, which makes those diskette
files inaccessible. While a removed file’s contents are still stored
on the diskette, and it may sometimes be possible to recover them in

an emergency (see M(ake), the system acts as if a removed file had
been erased from the diskette. That area of the diskette is then
considered free for overwriting with other files.

This command requires one file specification for each diskette file
that you wish to remove. Wildcards are legal. Size specification
information is ignored.

EXAMPLE:
Suppose the Prefix diskette contains these files:

AARDVARK.TEXT
ANDROID.CODE
QUINT.TEXT
AMAZING .CODE

Prompt: REMOVE WHAT FILE ? or REMOVE ?

Response: AMAZING.CODE

Typing this response tells the system to remove the file AMAZING.CODE
from the Prefix diskette’s directory. The system then considers that file
erased from the diskette, although only the directory has been changed.

To remove SYSTEM.WRK.TEXT and/or SYSTEM.WRK.CODE , the Filer’s N(ew

command should be used, or the system may get confused. IT IS VERY
IMPORTANT TO REMEMBER THIS LITTLE QUIRK, BECAUSE THE SYSTEM WON’T WARN YOU.

As noted before, wildcard removes are legal. Fortunately, before
finalizing any wildcard removes, the Filer asks if you wish to

UPDATE DIRECTORY ?
Typing Y in response to this prompt causes all the specified files to

be removed. Typing N returns you to the outer level of the Filer
without any removes having occurred.

EXAMPLE:

Prompt: REMOVE WHAT FILE ? or REMOVE ?

Response: A=CODE

48 APPLE PASCAL OPERATING SYSTEM

Typing this response causes the Filer to remove AMAZING.CODE and
ANDROID.CODE from the Prefix diskette directory.

WARNING: Remember that the Filer considers the one-character file
specification = (where both subset-specifying strings are empty) to

specify every file on the volume. Typing an = alone will cause the
Filer to remove every file on your directory!

K(runch

Moves the files on the specified diskette volume so that unused blocks
are combined. You use this when you run out of space or seem about

to, because the unused space on the diskette is fragmented. Using the
E(xtended directory list command to list the directory will show you

how the unused space is distributed on the diskette. After typing K,

all the unused space will be together at the end of the diskette (or
at some other place on the disk, specified by you).

This command requires that you type a diskette volume name or number.

The specified diskette volume must be on-line (currently available to
the system). It is a good idea to perform a bad block scan of the

volume before K(runching, to avoid writing files over bad areas of the
diskette. If bad blocks are encountered, they must be either fixed
or marked before the K(runch (see X(amine).

As each file is moved, its name is displayed on the screen. If
SYSTEM.PASCAL is moved, the system must be reinitialized by booting.

WARNING! Do not touch the disk, the RESET key, the power switch or the

disk-drive door until K(runch tells you it has completed its task. To
do otherwise may make the information on your diskette unreadable.

EXAMPLE:

Suppose you wish to K(runch the boot diskette:
Prompt: CRUNCH WHAT VOL ? or CRUNCH ?
Response: *

You could also have responded with the volume number (#4:) or the
volume name of the boot diskette, of course.

Prompt: FROM END OF DISK, BLOCK 28(% ? (Y/N)

Typing the response Y initiates the normal K(runch. Typing an N will
cause the prompt:

Prompt: STARTING AT BLOCK # ?

FILER 49

If you type a block number in response to this prompt, the Filer will

attempt to make room for new files in the area surrounding the block
number that you specified. It does this by moving files forward

(toward lower block numbers) which are below the specified block, and
moving files backward (toward higher block numbers) which are above the

specified block. This feature allows you to re-arrange files, by
placing them at diskette locations other than the end of the diskette.

Note: If you specify a Krunch starting block that is clearly within an
existing file, but the Filer tells you the diskette is already Krunched,
just try again with a starting block in the next higher-block-numbered
file.

Z(ero

"Erases" the directory of the specified volume (by writing zeros into
it). The previous directory is rendered irretrievable. This is used
to "recycle" a used diskette; the system forgets anything previously
stored on the diskette and the diskette is ready to be used again.
This command does NOT format the diskette: the diskette must already
have been formatted by eXecuting the FORMATTER utility program (see
this manual’s chapter UTILITY PROGRAMS).

EXAMPLE:

Suppose you wish to forget all information stored on a diskette named
OLDDISK, in disk drive volume #5: , in order to re-use it as a clean,
blank diskette.

Prompt: ZERO DIR OF WHAT VOL ? or ZERO DIR OF ?

Response: #5:

Prompt: DESTROY OLDDISK: ?

Response: Y

Prompt: DUPLICATE DIR ?

Always respond to this prompt by typing an N response, which will

cause the usual single directory to be maintained. The Apple Pascal
system does not support duplicate directories. Next you will see:

Prompt: ARE THERE 28§ BLKS ON THE DISK ? (Y/N)

Response: Y

50 APPLE PASCAL OPERATING SYSTEM

&

The Apple Pascal system uses only 28@-block diskettes, so your answer
to this prompt should always be Y for "Yes'". Each diskette’s
directory contains the number of the blocks on the diskette. If your
system ever asks

ARE THERE 11¢/¢ BLKS ON THE DISK ? (Y/N)

(or any number other than 28(), the diskette’s directory is probably
damaged.

Now you will be asked to name the newly-zeroed diskette:

Prompt: NEW VOL NAME ?

Response: NEWDISK:

(or you can type any other valid volume name); and then you will be
asked to verify the new name.

Prompt: NEWDISK: CORRECT ?
Response: Y

Typing a Y response to this prompt causes the Filer to respond with
the message:

NEWDISK: ZEROED

WORKFILE COMMANDS

Glet

Identifies the designated diskette file for later use as the
workfile. The next time you attempt to Edit, Compile, or Run, the
designated file will be used. At that time, if the designated file
is no longer available to the system this message is given:

ERROR: WORKFILE LOST.

Note: Although you are told that the specified file has been '"loaded",
this command does NOT actually transfer the specified file to the boot
diskette file named SYSTEM.WRK (or to any other file). The file
SYSTEM.WRK is usually created by Updating the workfile from the Editor
(see this manual’s chapter THE COMMAND LEVEL for more information
about the workfile, and the chapter THE EDITOR for more information
about the Editor).

FILER 51

One-drive note: In one-drive systems, since your boot diskette
(usually APPLE@:) must be in the drive to Edit, Compile, and Run the

designated workfile, you can only effectively G(et files that you have
previously T(ransferred to your boot diskette.

If there is already a workfile SYSTEM.WRK present on the boot diskette
when you issue the G(et command, you are prompted:

THROW AWAY CURRENT WORKFILE ?

Response: Y will clear the workfile, removing all files SYSTEM.WRK

from the boot diskette, while N returns you to the outer level of
the Filer.

Typing the filename’s suffix in the file specification is not
necessary. If the volume name of the diskette is not given, the
Prefix diskette is assumed. Wildcards are not allowed, and the size
specification option is ignored.

EXAMPLE:
Suppose the Prefix diskette contains the following files:

FILERDOC2.TEXT
ABSURD.CODE
HYTYPER.CODE
STASIS.TEXT
LETTER1.TEXT

FILER.DOC.TEXT
STASIS.CODE

Prompt: GET WHAT FILE ? or GET ?

Response: STASIS

The Filer responds with the message
TEXT & CODE FILE LOADED

since both text and code file exist. Had you typed STASIS.TEXT or
STASIS.CODE , the result would have been the same: both text and code
versions would have been identified for later use as the workfile. If
only one of the versions exists, as in the case of ABSURD.CODE, then
that version is identified for later workfile use, regardless of
whether text or code was requested. Typing ABSURD.TEXT in response to
the prompt would generate the message: CODE FILE LOADED . Working
with the workfile may create a number of files whose names begin
SYSTEM.WRK. , as parts of the workfile. These files will disappear
when the S(ave command is used to save the contents of the workfile
under their original filename or under a new filename. If the system
is rebooted before the S(ave command is used, the original name of the
workfile”s contents (as specified by the G(et command) will be forgotten

52 APPLE PASCAL OPERATING SYSTEM

S(ave

Saves all versions of the boot diskette’s workfile SYSTEM.WRK under
the filename originally specified with G(et or under a different
filename which you specify.

If a file already exists with the specified filename and if you are
S(aving your file onto a diskette other than the boot diskette, you
are asked for verification before the old file is removed. In that
case, the workfile is saved under the specified name only after the
old file has been removed.

If you are S(aving the workfile as another filename on the boot diskette,
the workfile (which is already on that diskette) is simply renamed.

When you S(ave the workfile on a diskette other than the boot

diskette, the system is actually performing a T(ransfer of the

workfile. Thus the workfile is unchanged after the S(ave is completed.

The entire file specification is not necessary. In particular, DO NOT
specify a suffix. The correct suffix for each version of the workfile
(.TEXT, .CODE, etc.) is supplied automatically, in addition to any
suffix that you might type. Unlike many parts of the system, ending
the specified filename with a period does NOT suppress the addition of
a suffix. If the diskette volume name or number is not given, the
Prefix diskette is assumed. Wildcards are not allowed, and the size
specification option is ignored.

One-drive note: Even on one-drive systems, S(ave works just fine if
there is only one version of the workfile. If you S(ave the workfile
onto a diskette other than the boot diskette, the Filer will prompt
you to put the destination diskette into the drive at the correct
time. However, only the FIRST version of the workfile (usually .TEXT)
is S(aved onto the destination diskette. If the Filer returns to the
boot diskette to get another version of the workfile (.CODE, say), the
boot diskette is not in the drive and the command is terminated. If
you want to S(ave MORE THAN ONE version of the workfile (.TEXT and
.CODE, say), first S(ave the workfile onto the boot diskette. This
renames the workfile versions and tells the system that your workfile
is gone. THEN T(ransfer the S(aved versions onto your destination
diskette, one version at a time.

EXAMPLE:

Prompt: SAVE AS MYDISK:OLDFILE ?

Response: N

Prompt: SAVE AS WHAT FILE ? or SAVE AS ?

Response: Type a filename of 1@ or fewer characters, observing the
filename conventions discussed under FILES (earlier in this chapter).
This causes the Filer to remove (after asking you for verification)

any old file having the specified filename, and then to save the
workfile under that name. For example, typing X in response to the

FILER 53

prompt causes the workfile to be saved on the Prefix disk as X.TEXT .
If a codefile has been compiled or assembled since the last update of
the workfile, that codefile will also be saved, as X.CODE .

The Filer automatically appends the suffixes .TEXT and .CODE to files
of the appropriate type. Explicitly typing AFILE.TEXT in response to
the prompt will cause the Filer to save this file as AFILE.TEXT.TEXT .

EXAMPLE:
Prompt: SAVE AS WHAT FILE ? or SAVE AS ?

Response: RED:EYE

If one of your disk drives contains a diskette named RED: , you will
soon see the message

APPLE1:SYSTEM.WRK.TEXT
--> RED:EYE.TEXT

This message tells you that the workfile named SYSTEM.WRK.TEXT , on

the boot diskette named APPLEl: , has been successfully transferred to
the file named EYE.TEXT , on the diskette named RED: . If there is no
diskette named RED in any disk drive, you will see the message

PUT IN RED:
TYPE <SPACE> TO CONTINUE

This gives you the chance to insert a diskette named RED , if you have
one, into a disk drive. RED:EYE constitutes a file specification,

and this response will tell the Filer to attempt to transfer the
workfile to the specified volume and file (see the T(ransfer command).
If you specified diskette RED: by accident, press the spacebar anyway.
The system will not find diskette RED: , and the command will be
terminated.

EXAMPLE:

Suppose you earlier used the G(et command to designate the file
MYDISK:LETTER as the next workfile. You then Q(uit the Filer and
entered the FE(ditor, causing MYDISK:LETTER.TEXT to be read into the
computer. Finally, you added some new material to the file, and then
used the Editor’s Q(uit and U(pdate commands to store the new version

of the file on the boot diskette as SYSTEM.WRK.TEXT .

Now, back in the Filer again, you type S for S(ave and receive this
prompt:

SAVE AS MYDISK:LETTER ?
If you type a Y , the Filer first asks

REMOVE OLD MYDISK:LETTER.TEXT ?

54 APPLE PASCAL OPERATING SYSTEM

Typing another Y causes your previous version of LETTER.TEXT to be
removed from MYDISK: , and then causes the new version (stored as
APPLE1:SYSTEM.WRK.TEXT) to be saved on MYDISK:

APPLE1: SYSTEM.WRK. TEXT
—=> MYDISK:LETTER.TEXT

N(ew

Clears the workfile, so that there is no default file to be used
automatically by E(dit, C(ompile, A(ssemble, and R(un . The last file
specified as the workfile by the Filer’s G(et command is no longer so
designated. All versions of the workfile SYSTEM.WRK saved on the boot
diskette are removed from the directory (SYSTEM.LST.TEXT is also
removed). There will be no workfile on the boot diskette until a
workfile is saved (usually using the Editor’s U(pdate command).

If there is already a workfile SYSTEM.WRK present on the boot diskette
when you issue the N(ew command, you are prompted:

THROW AWAY CURRENT WORKFILE ?

Response: Y will clear the workfile, removing all files SYSTEM.WRK
from the boot diskette, while N returns you to the outer level of
the Filer.

Use the N(ew command to clear away the automatically-loaded workfile

before you try to create a new file in the Editor or Compile any file
other than the workfile.

W(hat

Identifies the name and state (saved or not) of the workfile.

If the workfile has been S(aved onto any diskette other than the boot
diskette, the W(hat command continues to report the workfile as (NOT
SAVED). This is because the workfile still exists on the boot
diskette.

INFORMATION COMMANDS

V(olumes
Lists the input and output volumes (devices or diskettes) currently

"on-line" (actively connected into the system), by volume name and by
volume number.

FILER 55

A typical display for a single-drive system, with few peripherals,
might be:

VOLS ON-LINE:

1 CONSOLE:

2 SYSTERM:

4 # APPLE@:
ROOT VOL IS - APPLE(Q:
PREFIX IS - APPLE{:

The volumes CONSOLE: and SYSTERM: are always available. They are just
two different ways to refer to the screen and the keyboard.

A four-drive system, with a printer and with a modem for communicating
over telephone lines, might give a display like this:

VOLS ON-LINE:
1 CONSOLE:
2 SYSTERM:
4 # APPLEL:
5 # APPLE2:
6 PRINTER:
7 REMIN:
8 REMOUT:
11 # APPLE3:
12 # JEF:
ROOT VOL IS - APPLEl:
PREFIX IS - JEF:

The boot diskette, also called the system volume, is indicated here as
the ROOT VOL =-- in this case the diskette named APPLEl: , in disk drive
volume #4: . The default volume is indicated here as the PREFIX volume
-- in this case it has been changed by the P(refix command to JEF: ,
the name of the diskette in disk drive volume #12: . In general, the
Prefix volume will be the same as the boot volume unless the Prefix
(see the P(refix command) has been changed. Block-structured devices
(disks) are indicated by a "pound" sign (#).

L(ist Directory

Lists a diskette’s directory, or part of one, to the volume and file
specified (default is CONSOLE:). All files and unused areas are listed
along with their block length and last modification date.

You may list any portion of the directory, using the "wildcard"
option, and may also write the directory, or any portion of it, to a
volume or filename other than CONSOLE: . This is why ycu must
sometimes give both a source file specification and a destination file
specification. The destination file specification should NOT include
a wildcard.

56 APPLE PASCAL OPERATING SYSTEM

Source file specification consists of a mandatory disk volume name or
number, and optional wildcard and subset-specifying strings, which may
be empty. The source file specification must be separated from a
destination file specification by a comma (,). Destination file
specification consists of a volume name or number and, if the volume
is a disk, you MUST include a filename.

A directory listing stops when it has filled the screen. Press the
spacebar to continue the listing, or press the ESC key to abandon the
listing and return to the Filer prompt line.

EXAMPLE:

The most frequent use of this command is to list an entire diskette
directory on the screen. The following display, which represents a
complete directory listing for an example diskette APPLE@: , could be
generated by typing any valid volume name or number for APPLE@: in
response to the prompt,

Prompt: DIR LISTING OF WHAT VOL ? or DIR LISTING OF ?

Response: #4:

APPLE@:

SYSTEM.PASCAL 36 4-MAY-79
SYSTEM.MISCINFO 1 4=-MAY-79
SYSTEM.COMPILER 71 3@-MAY-79
SYSTEM. EDITOR 45 29-JAN-79
SYSTEM.FILER 28 24~MAY-79
SYSTEM.LIBRARY 36 22-JUN-79
SYSTEM.CHARSET 2 14=JUN-79
SYSTEM. SYNTAX 14 18=APR-79
TUNAFISH.TEXT 4 8-JUL-79
SYSTEM.WRK. TEXT 4 17=JUL=79
SYSTEM.WRK.CODE 2 17=-JUL-79

11/11 FILES, 31 UNUSED, 23 IN LARGEST

The bottom line of the display informs you that 11 files out of a

total of 11 files on the diskette have been listed, that there are 31

out of a total of 28(diskette blocks left for you to use, and that

there are 23 contiguous blocks in the largest unused area on the
diskette. The first ratio shows that you are looking at a complete
listing of the diskette’s directory, and not a partial listing as
discussed below. The last number shows the size of the largest file

that you could now store onto *his diskette. Even though there are 31
unused blocks available on the diskette, the largest file you could store
would be 23 blocks, because a file must be stored in contiguous blocks.

EXAMPLE:
Here is a L(ist-directory transaction involving wildcards.

Prompt: DIR LISTING OF WHAT VOL ? or DIR LISTING OF ?

Response: #4:S=R

FILER 57

Typing the response above might generate the following display:

APPLE@:

SYSTEM.COMPILER 71 3@-MAY-79
SYSTEM.EDITOR 45 29-JAN-79
SYSTEM.FILER 28 24-MAY-79

3/11 FILES, 93 UNUSED, 93 IN LARGEST

A partial listing of a directory assumes that the last file listed is
the last file on the diskette, and uses that assumption in calculating
the number of unused blocks remaining on the diskette beyond the last
listed file. This faulty assumption usually gives an incorrect number
of unused blocks, and an incorrect size for the largest unused area.
This is only a problem on partial listings; complete listings give the

correct numbers.

EXAMPLE:

This L(ist-directory transaction involves writing a subset of the
directory to a device other than the default CONSOLE:

Prompt: DIR LISTING OF WHAT VOL ? or DIR LISTING OF ?
Response: APPLE@:S=R,PRINTER:

Typing the above response causes this message:

APPLE@:

SYSTEM.COMPILER 71 4=-MAY-79
SYSTEM. EDITOR 45 29-JAN-79
SYSTEM.FILER 28 24-MAY-79

3/11 FILES, 93 UNUSED, 93 IN LARGEST
to appear on the printer (if you have a printer, and if it was turned
on!). It’s that easy. The number of unused blocks is still wrong,

since this is a partial directory listing.

EXAMPLE:

This L(ist-directory transaction involves writing the directory to a
disk:

Prompt: DIR LISTING OF WHAT VOL ? or DIR LISTING OF ?
Response: #4:,#4:DRCTRY. TEXT
After typing this response, you will see the message

WRITINGeeosoosase

58 APPLE PASCAL OPERATING SYSTEM

as the Filer creates the file DRCTRY.TEXT on the diskette in disk
drive #4: . This file would contain the entire directory of the

diskette in drive #4: , as it looked BEFORE the file DRCTRY.TEXT was
added to it.

E(xtended Directory List

Lists the directory of a diskette, giving more detail than the L(ist-
directory command. All files and unused areas are listed along with
(in this order) their block length, last modification date, the
starting block address, and the filetype.

This command takes a little longer than the L(ist-directory command,
but it gives important extra information about the distribution of
files on your diskette.

The prompt lines, syntax, and wildcard options are exactly the same for
this command as for the L(ist-directory command discussed above. For
more details and examples, look at the L(ist-directory discussion.

EXAMPLE:

An example display for a diskette APPLE@: , also shown in the
previous L(ist-directory discussion, is shown below.

Prompt: DIR LISTING OF WHAT VOL ? or DIR LISTING OF ?

Response: i#4:

APPLE@:

SYSTEM.PASCAL 36 4~MAY-79 6 DATA
SYSTEM.MISCINFO 1 4-MAY-79 42 DATA
SYSTEM.COMPILER 71 3(@-MAY-79 43 CODE
SYSTEM.EDITOR 45 29-JAN-79 114 CODE
SYSTEM.FILER 28 24-MAY-79 159 CODE
SYSTEM.LIBRARY 36 22-JUN-79 187 DATA
SYSTEM.CHARSET 2 14-JUN-79 223 DATA
SYSTEM. SYNTAX 14 18-APR-79 225 TEXT
< UNUSED > 4 239
TUNAFISH.TEXT 4 8-JUL-79 243 TEXT
< UNUSED > 4 247
SYSTEM.WRK. TEXT 4 17-JUL-79 251 TEXT
SYSTEM.WRK.CODE 2 17-JUL-79 255 CODE
DRCTRY.TEXT 4 18-JUL-79 257 TEXT

< UNUSED > 19 261
12/12 FILES, 27 UNUSED, 19 IN LARGEST

If you are using the Apple Pascal system with an external terminal
whose screen shows an 8@-character-wide, upper-and-lower-case display,

FILER &9

your directory listing will appear somewhat different from the one
shown above. The same diskette directory, if listed on your system,
would look more like this:

APPLE@:

SYSTEM.PASCAL 36 4~May-79 6 512 Datafile
SYSTEM.MISCINFO 1 4-May-79 42 512 Datafile
SYSTEM.COMPILER 71 3¢-May-79 43 512 Codefile
SYSTEM.EDITOR 45 29-Jan-79 114 512 Codefile
SYSTEM.FILER 28 24-May-79 159 512 Codefile
SYSTEM.LIBRARY 36 22-Jun-79 187 512 Datafile
SYSTEM.CHARSET 2 14=Jun-79 223 512 Datafile
SYSTEM. SYNTAX 14 18-Apr-79 225 512 Textfile
< UNUSED > 4 239

TUNAFISH.TEXT 4 8=Jul-79 243 512 Textfile
< UNUSED > 4 247
SYSTEM.WRK.TEXT 4 17-Jul-79 251 512 Textfile
SYSTEM.WRK.CODE 2 17=-Jul-79 255 512 Codefile
DRCTRY.TEXT 4 18-=Jul-79 257 388 Textfile

< UNUSED > 19 261
12/12 files<listed/in-dir>, 253 blocks used, 27 unused, 19 in largest

The extra column of numbers gives the number of bytes used in the last

block of each file. This number is almost always 512, the maximum
number of bytes per block.

EXAMPLE:

Here is an E(xtended-directory-list transaction that lists a partial
directory by using a wildcard in the filename specification.

Prompt: DIR LISTING OF WHAT VOL ? or DIR LISTING OF ?
Response: #4:S=R

Typing the response above might generate the following display:

APPLE@:

SYSTEM.COMPILER 71 3@-MAY-79 43 CODE
SYSTEM. EDITOR 45 29-JAN-79 114 CODE
SYSTEM.FILER 28 24-MAY-79 159 CODE
< UNUSED > 93 187

3/12 FILES, 93 UNUSED, 93 IN LARGEST

A partial listing of a directory assumes that the last file listed is
the last file on the diskette, and uses that assumption in calculating

the number of unused blocks remaining on the diskette beyond the last

listed file. This faulty assumption usually gives an incorrect number
of unused blocks, and an incorrect size for the largest unused area.

This is only a problem on partial listings; complete listings give the
correct numbers.

60 APPLE PASCAL OPERATING SYSTEM

DISK UPKEEP COMMANDS

B(ad Blocks

Scans the specified disk volume and detects bad blocks, by comparing
the recorded checksum for each block with the actual information
stored in the block.

This command requires that you type a volume name or number. The
specified disk volume must be on-line (currently available to the
system). If the disk drive or diskette is not there, the message
NO SUCH VOL ON-LINE <SOURCE>

will appear. You can just ignore the last word.

EXAMPLE:

Prompt: BAD BLOCK SCAN OF WHAT VOL ? or BAD BLOCK SCAN OF ?
Response: APPLE(Q:

Prompt: SCAN FOR 28¢ BLOCKS ? (Y/N)

In response you will normally type Y for "Yes", telling the Filer
you want to scan the entire diskette. If you wish to check only a

smaller portion of the disk (a very unusual case), type N and you
will be asked to type the number of blocks you want the Filer to scan.

Note: The Apple Pascal System uses only 28@-block diskettes, so you
can always answer the question

SCAN FOR 28@ BLOCKS ? (Y/N)

with a Y . Each diskette’s directory contains the number of blocks on
that diskette. If your system should ever ask

SCAN FOR 1134 BLOCKS ? (Y/N)

(or any number other than 28@), the diskette’s directory is probably
damaged.

When you type Y , the system then checks each block on the indicated

diskette volume for errors, and lists the block number of each bad
block. The message you will see at least 99% of the time is this:

SCAN FOR 28¢ BLOCKS ? (Y/N) Y
@ BAD BLOCKS

Very rarely, however, the disk drive will buzz and clatter, and you
may see a message similar to this:

FILER 61

SCAN FOR 28¢ BLOCKS ? (Y/N) Y
BLOCK 23 IS BAD

BLOCK 24 IS BAD

BLOCK 25 IS BAD

3 BAD BLOCKS

FILE(S) ENDANGERED:
THISFILE.TEXT 18 24

THATFILE.CODE 25 29

The last line tells you that the three bad blocks are contained partly
in the file THISFILE.TEXT , which is stored in blocks 18 through 24 ,
and partly in the file THATFILE.CODE , which occupies blocks 25
through 29 . Blocks reported as "bad" can often be fixed, using the
X(amine command. Those which cannot be fixed can be "reserved" to
avoid their use. See the X(amine command, which follows this
discussion, for a more complete example of this process.

X(amine

Attempts to "fix" suspected bad blocks on a diskette (bad blocks are
found by using the B(ad-blocks command). The eXamine command is
invoked by typing the letter X .

This command requires that you type a disk volume name or number. The

specified disk volume must be on-line (currently available to the
system).

EXAMPLE:

Suppose you have just done a B(ad-blks scan of the diskette named
MYDISK:, and the Filer has given you the following message:

SCAN FOR 28¢ BLOCKS ? (Y/N) Y
BLOCK 23 IS BAD

BLOCK 24 IS BAD
BLOCK 25 IS BAD
3 BAD BLOCKS
FILE(S) ENDANGERED:
THISFILE.TEXT 18 24
THATFILE.CODE 25 29
Now you have typed X to initiate the eXamine command.

Prompt: EXAMINE BLOCKS ON WHAT VOLUME ? or EXAMINE BLOCKS ON ?

Response: MYDISK:

Prompt: BLOCK~RANGE ?

At this point, you should have just done a bad block scan (using the
B(ad-blks command), and should enter the block number returned by

62 APPLE PASCAL OPERATING SYSTEM

the bad block scan. If more than one bad block was reported, type the

number of the first bad block, followed by a minus sign, followed by
the number of the last bad blocke.

Response: 23-25

If any files are stored on the area of the diskette occupied by the

blocks you are about to eXamine, you will be told the name of each such
file and its beginning and ending block numbers:

Prompt: FILE(S) ENDANGERED:

THISFILE.TEXT 18 24
THATFILE.CODE 25 29
FIX THEM ?

Note: The files shown are endangered merely by their containing bad
blocks, NOT by the eXamine process. Also, the question FIX THEM ?
refers to the specified bad blocks, not to the files.

An N response to this prompt returns you to the outer level of the

Filer. If you type a Y in response to the above prompt, you will
cause the Filer to examine the blocks in the range you specified. The

Filer will then usually return a message like this:

BLOCK 23 MAY BE OK
BLOCK 24 MAY BE OK
BLOCK 25 MAY BE OK

in which case the bad blocks have probably been fixed. Occasionally,
however, the Filer may return a message like this:

BLOCK 23 MAY BE OK

BLOCK 24 IS BAD

BLOCK 25 IS BAD

FILE(S) ENDANGERED:
THISFILE.TEXT 18 24
THATFILE.CODE 25 29

MARK BAD BLOCKS ? (FILES WILL BE REMOVED !) (Y/N)

in which case the Filer is offering you the option of marking the
block(s) which it could not fix. If you type a Y response to this
prompt, the Filer first removes all files containing those bad blocks
that could not be fixed. It then creates a special file on the
diskette, named BAD , which exactly covers the bad blocks (or more
than one such file, if the bad blocks are not contiguous). This
message then appears:

BAD BLOCKS MARKED

and you are returned to the outer Filer level. On the diskette, there
is now a new directory entry saying

BAD.(@#@@#24 .BAD

FILER 63

Blocks in a file marked .BAD will not be used to store any of your
files, and will not be shifted during a K(runch. These dangerous
areas of your diskette are thus rendered effectively harmless. It is
a good idea to do a bad-blocks scan of each new diskette, at the time
you first create the formatted, zeroed diskette. Any bad spots on the

diskette which are discovered at that time can be safely and easily
marked, saving you much trouble in the future.

WARNING: A block which has been "fixed" may still contain useless
garbage. The message MAY BE OK should be translated as "is probably
physically ok". Fixing a block means that the information stored in
the block is read into the computer, is stored again at the same spot
on the diskette, and is then read again. If the same information is
read from the block both times, that spot on the diskette is probably
not physically damaged (some kinds of damage cause inconsistent
recordings). In that event, the message MAY BE OK is given. However,
if the two readings are different, the block is declared bad and may
be marked as such to protect you from using that spot on your
diskette.

The most common cause of reported bad blocks on a diskette is actual,
physical damage or other problem with the diskette’s recording
surface. Dirt, fingerprints, and peanut butter are common culprits.
An attempt to store information in a bad block may result in the loss
of that information, and may render the entire file unreadable. To
guard against this kind of problem, you should always do the
following:

1) Handle your diskettes very carefully, and keep them clean;

2) Do a B(ad-blocks scan of every diskette at the time you format

it, when you Z(ero its directory to re-use it, and at any other
times when you have suspicions about the diskette.

A less common cause of bad blocks is opening the disk drive door or
otherwise disturbing the recording process while the system is trying
to store information on the diskette in that drive. This will
sometimes create an error in the data field of a diskette sector.
Since the diskette itself is not damaged, this kind of error can be
"fixed" by the X(amine command. However, the information in that
block may still be faulty.

Occasionally, the address field of a diskette sector may be rendered
unreadable by something you or the system does. This problem is
reported as a bad block by the B(ad-blocks command, but it cannot be
fixed by the X(amine command. When you attempt to read or transfer
the file containing the damaged address field, the system will report
I/0 ERROR #64 . This problem can be corrected by reformatting the
diskette (which erases everything on the diskette, so be sure to save
the undamaged files, first). Or, of course, you can just mark the bad
blocks to avoid using them.

64 APPLE PASCAL OPERATING SYSTEM

MISCELLANEOUS COMMANDS

P(refix

Changes the current default Prefix volume name to the volume name
specified. Thereafter, until the next time the system is booted, the
system will supply this Prefix volume name whenever a file
specification does not include any volume name or number.

This command requires that you type a volume name or number. An
entire file specification may be entered, but only the volume name or

number will be used. It is not necessary for the specified volume to
be on-line (actually in the system at the moment). If you specify a

disk volume, either by number or by name, the Prefix is set to the

NAME of the diskette in that drive. You may specify devices other
than a disk volume, such as PRINTER: .

Each time the system is booted, the Prefix volume name is set to the
name of the diskette in the boot disk drive (slot 6, drive 1l; the boot
or "Root" volume). At any time, you can return the Prefix volume name

to the boot volume name again by typing an asterisk (*) in response
to the Prefix prompt.

To see which volume name is currently set as the default, you may
respond to the Prefix prompt by typing a colon (:) alone.

Using the C(hange command to change the name of the Prefix diskette
also changes the default Prefix name supplied by the system.

On a one-drive system, being able to set the default volume name can
save you much typing, if you are having to switch back and forth
between two diskettes. One of the diskettes you use most will usually
be the boot diskette, which can always be specified by * . If the
Prefix is set to the name of the other diskette you use often, you can
eliminate the volume from all file specifications typed while that
diskette is in the drive.

On a two-drive system, you can use the Prefix command to make the
diskette in disk drive volume #5: (slot 6, drive 2) the Prefix
default. This saves typing, because the diskettes in the two drives
can then be specified with the simple names : and * .

D(ate

This is the first command you should use every day; it ranks only
after brushing your teeth as a necessity. The command tells you what
date the system thinks it is, and allows you to correct any mistaken
impression the system might have.

FILER 65

Prompt: DATE SET: <l..31>-<JAN..DEC>-<f@..99>
TODAY IS 19-AUG-79
NEW DATE ?

You may enter the correct date in the format shown after TODAY IS .
For example, if today is the 13th of November, 1981, you might type

Response: 13-NOV-81

After pressing the RETURN key, the new date is displayed. Typing
only a RETURN does not affect the current date. The hyphens are
delimiters for the day, month and year fields, and it is possible to
affect only one or two of these fields. For example, the year could
be changed by typing --8@ , the month by typing -SEP , etc. The
entire month-name can be entered, but will be truncated to three
letters by the Filer. Slash (/) is also acceptable as a delimiter.

In most cases, you will need to type only a single number, which will
set the new day. For example, if yesterday was the 19th of August,
you would simply type D2 and press the RETURN key. This command
and response would change the date to the 2fth of August (typing D
initiates the date-setting routine, typing 2@ sets the new date, and
pressing the RETURN key terminates your entry). The day-month-year
order is inviolate, however.

This date will be associated with any files saved during the current

session and will be the date displayed for those files when the
directory is listed. This information can be very useful when you are
trying to remember which is your latest version of a file.

Q(uit

Leaves the Filer, returning you to the outermost Command level of the

operating system. Remember to have your boot diskette in the boot
drive before you issue this command.

66 APPLE PASCAL OPERATING SYSTEM

FILER COMMAND SUMMARY

FILE SPECIFICATION

#5: or MYDISK: Typical volume specification. See Table 3A for
device volume names and numbers.

#5:MYFILE.TEXT Typical file specification. Unless otherwise
or noted, Filer commands require complete file
MYDISK:MYFILE.TEXT specifications, including the suffix.
MYFILE.TEXT[13] Typical filename with file [size] specifier.
Used with M(ake and T(ransfer commandse.
* Specifies the boot diskette volume name.
H Specifies the Prefix volume name.
Volume name with
no filename Specifies the entire named diskette.

Filename with no
volume name Specifies the named file on the Prefix volume.

= Wildcard used in specifying a subset of filenames
to be acted on. For example, BR=XT specifies all
filenames beginning with BR and ending with XT .

2 Same as = except Filer requests verification before
acting on each filename. Example: BR?XT

$ In T(ransfer, specifies a destination filename which
is the same as the source filename.
’ Separates any number of Filer command response fields.

Some commands use response fields in pairs.

CTRL-K Produces the left bracket: [
SHIFT-M Produces the right bracket:]

SYSTEM COMMANDS

CTRL-A Shows the other 4@-character '"page" of the system’s
8@~-character display, until the next CTRL-A .

CTRL-Z Display scrolls right and left to follow the cursor.

CTRL-S Stops any on-going process until the next CTRL-S .

CTRL-F Flushes program output (does not send it to the screen

or printer) until the next CTRL-F .

FILER 67

GENERAL FILE-MOVING COMMAND

T(ransfer: Transfers information from the first specified volume or
file to the second specified volume or file. Destination file

uses the largest unused diskette area or the first unused area
of specified [size]. Used to move or save diskette files, copy
entire diskettes, or send files to a printer or other device.

GENERAL DISKFILE COMMANDS

M(ake: Creates a diskette directory entry with the specified filename
and [size]l. Produces a "dummy" file on the diskette.

C(hange: Renames the specified diskette or diskette file to the second
specified name. If second specification is a filename, it
need not include the volume.

R(emove: Removes the specified file from a diskette’s directory.

K(runch: Packs the files on the specified diskette so that unused
portions of the diskette are combined into one area at the
end (or other specified area).

Z(ero: Renames and erases the directory of the specified diskette.

WORKFILE COMMANDS

G(et: Designates a specified diskette file as the next workfile (no
suffix needed: .TEXT and .CODE are supplied automatically).
The next E(dit, C(ompile or R(un will use this file.

S(ave: Saves all versions of the workfile SYSTEM.WRK under the
specified filename (do not specify a suffix: .TEXT and .CODE
are supplied automatically).

N(ew: Clears the workfile, removing all SYSTEM.WRK files from the
boot diskette.

W(hat: Tells the name and state (saved or not) of the workfile.

68 APPLE PASCAL OPERATING SYSTEM

INFORMATION COMMANDS

V(olumes: Shows the devices and diskettes currently in the system, by
volume number and by volume name.

L(ist-directory: Shows what files are on the specified diskette. If
desired, list is sent to a second specified file or device.

E(xtended-directory-list: Shows what files are on specified diskette,

with extra information about the files and unused portions.
If desired, list is sent to a second specified file or device.

DISK UPKEEP COMMANDS

B(ad-blocks: Tests all 280 blocks on the specified diskette to see
that information has been recorded consistently. Any bad
blocks are reported. Use X(amine to fix bad blocks.

X(amine: Attempts to fix the specified diskette blocks, previously

reported bad by the B(ad-blocks command. Allows you to mark
blocks that can’t be fixed, to prevent using those blocks.

MISCELLANEOUS COMMANDS

P(refix: Changes the current default volume name to the volume name
specified. Response of : shows current Prefix volume name.

D(ate: Lets you specify a new current date for the system. Type one
number to change the day, only.

Q(uit: Leaves the Filer and returns to the outermost Command level.

FILER 69

CHAPTER 4

i
72
S
76
76
76
77
77
78
78
74)
7
80
81
81
82
83
83
84
85
85
87
88
88
89
90
S50
9kl
O
g
97
Ciz
92
93
95
94
94
94
95
95
95

INTRODUCTION
Diskfiles Needed
A "Window" into the File
The Cursor
The Prompt Line
Notation
A BRIEF SCENARIO
Clearing the Workfile
Starting a New File
Updating the Workfile
Saving the Workfile
One~Drive Method
Multi-Drive Method
Re-Editing an 0ld File
One-Drive Method
Multi-Drive Method
A LITTLE MORE DETAIL
Entering the Editor
Workfiles
Some Hidden Characters
Moving the Cursor
Using I(nsert wmode
Using D(elete mode
Leaving the Editor
THE EDITOR COMMANDS
General Information
The Cursor
The Screen
Repeat=-factors
The Set Direction
Cursor Moves
Moving Commands
J (ump
P(age
F(ind
Set Direction
Repeat=—factor
L(iteral or T(oken Search
Target String zud Delimiters
ESC Option
Same-string Option

97

121
122
122
17
122
1525
1223
124
125
125
125
1§25
125
125
125
126
126
126

Text Changing Commands
I(nsert
Text Formats
With A(uto-indent TRUE, F(illing FALSE
With A(uto-indent FALSE, F(illing TRUE
With A(uto-indent TRUE, F(illing TRUE
With A(uto-indent FALSE, F(illing FALSE
D(elete
Z(ap
C(opy
From a Diskette F(dile
From the Copy B(uffer
X(change
R(eplace
Set Direction
Repeat—-factor
L(iteral or T(oken Search
V(erify Option
Strings
String Delimiters
Same-string Option
Formatting Commands
A(djust
M(argin
Miscellaneous Commands
S(et
M(arker
E(nvironment
The Environment Options:
A(uto-indent
F(illing
L(eft Margin
R(ight Margin
P(aragraph Margin
C(ommand Character
T(oken Default
V(erify
Q(uit
U(pdate the Workfile
E(xit without updating
R(eturn to the Editor
W(rite to any Disk File
S(ave to original Disk File
EDITOR COMMAND SUMMARY
Screen Commands
Special Characters
Cursor Moves
Repeat-Factor
Set Direction
Moving Commands
Text Changing Commands
Formatting Commands
Miscellaneous Commands

INTRODUCTION

DISKFILES NEEDED

The following diskfiles allow you to edit programs and text:
SYSTEM. EDITOR (any diskette, any drive; required)

Textfile to be Edited (any diskette, any dri--e; optional;
default is boot diskette’s workfile
SYSTEM.WRK.TEXT, any drive)

The Apple Pascal system will retrieve the workfile from the boot
diskette, and store the workfile onto the boot diskette, no matter
which disk drive the boot diskette is in. However, since other files
on the boot diskette must be found in the boot drive, it is
recommended that you keep your boot diskette in the boot drive while
editing.

In addition, you may wish to have some of the following diskfiles
available to the system, if needed for your purposes:

SYSTEM.COMPILER (any diskette, any drive; optional;
used if you Run or Compile your
text after Editing)

SYSTEM.LINKER (any diskette, any drive; optionalj;

used if any external routines must

be Linked into your program) (no

Link needed to Use intrinsic Units)

SYSTEM.LIBRARY (boot diskette, boot drive; optionalj;
used if Run calls the Linker, or if
your program needs Long Integers,
does file 1/0, or USES Units)

SYSTEM.ASSEMBLER (any diskette, any drive; optionalj;
65¢@ .0OPCODES used if you Assemble your text
65@@ . ERRORS after Editing)

The file SYSTEM.EDITOR is normally found on diskette APPLEl: and also

on diskette APPLE@: . One of those diskettes is your boot diskette,
so be sure that diskette is in one of your disk drives (preferably
the boot drive) when you select the E(dit option.

One-drive systems boot initially with APPLEl: in the drive. If you
are just Editing, Filing, and eXecuting programs that are already
Compiled, you can continue to use APPLEl: as your boot diskette in a
one-drive system. If you are developing a program, you will want to
use the Edit-Run-Edit-Run cycle, which requires the Compiler in order

72 APPLE PASCAL OPERATING SYSTEM

to Run your newly-edited program. Since the file SYSTEM.COMPILER is
not on diskette APPLEl: , one-drive users should put APPLE@: (which
does contain SYSTEM.COMPILER) in the drive and press the RESET key to
re-boot. Thereafter, APPLE@: is your boot diskette.

In general, one-drive users will follow this procedure when Editing:

1. If you will wish to R(un a program you are editing, you must

use APPLE@: as your boot diskette. With your boot diskette
(APPLEl: or APPLE@:) in the drive, enter the Filer.

2. T(ransfer onto your boot diskette a copy of the textfile you
wish to Edit. Start the T(ransfer with the source diskette
in the drive, and wait until prompted before putting the
destination diskette (your boot diskette) into the drive.

3. With your boot diskette in the drive, G(et the textfile you
have just T(ransferred. Then Q(uit the Filer, and enter the
Editor. The file designated by G(et is automatically read
into the Editor.

4. Edit the file. Q(uit, U(pdate the workfile, and re-enter the
Editor from time to time. On each re-entry, the updated
workfile (SYSTEM.WRK.TEXT) is automatically read back into the
Editor. When you are through editing, Q(uit and U(pdate the
workfile one last time, but do not re-enter the Editor.

5. 1If you are editing a program, you can R(un the program now to
check its operation and also to generate a code version
(SYSTEM.WRK.CODE) of your latest workfile. Repeat steps 4 and
5 until the program runs as it should.

6. Enter the Filer and use the S(ave command to rename the
workfile on the boot diskette. Then T(ransfer the S(aved
file or files, one at a time, onto any other diskette. Start
each T(ransfer with the boot diskette in the drive, and wait
until prompted before putting the destination diskette in the
drive.

7. You may also wish to R(emove the S(aved files from your boot

diskette at this time, to leave more room on that diskette
for future editing jobs.

8. Before you Exit the Filer, put your boot diskette back in the
drive.

Two-drive systems also boot with APPLEl: in the boot drive. If you
place APPLE2: in the other drive, your system can use SYSTEM.COMPILER
from that diskette when you want to R(un a program you are editing.

Another possibility is to press RESET with APPLE@: in the boot drive.
Diskette APPLE@: (which contains SYSTEM.COMPILER) then becomes your
boot diskette and you will not have to put APPLE2: in the non-boot
drive to R(un a program you are editing.

EDITOR 73

On two-drive systems, ''mon-boot drive" means drive volume #5: (the
"boot drive" is volume #4:). On systems with three or more drives,
"non-boot drive" means any drive except volume #4:. Systems with
three or more drives can leave APPLEl: and APPLE2: in drive volumes
#4: and #5: throughout the Edit-Run-Edit-Run cycle.

In general, two-drive users will follow this procedure when Editing:

l. With your boot diskette (APPLEl: or APPLE@:) in the boot

drive, put in the other drive the diskette that has the file
you wish to Edit.

2. FEnter the Filer, and G(et the textfile you wish to Edit.
Then Q(uit the Filer, and enter the Editor. The file
designated by G(et is automatically read into the Editor.

3. Edit the file. Q(uit, U(pdate the workfile, and re-enter the
Editor from time to time. On each re-entry, the updated
workfile (SYSTEM.WRK.TEXT) is automatically read back into the
Editor. When you are through editing, Q(uit and U(pdate the
workfile one last time, but do not re-enter the Editor.

4. 1If you are editing a program, you can R(un the program now to
check its operation and also to generate a code version
(SYSTEM.WRK.CODE) of your latest workfile. If your boot
diskette is APPLEl: , you should put APPLE2: in the non-boot
drive before attempting to R(un your program. This is not
necessary if you are using APPLE@): as your boot diskette.
Repeat steps 3 and 4 until the program runs as it should.

5. Enter the Filer, and S(ave the workfile onto a diskette that
you have put in the non-boot drive.

If you are only editing text, you may wish to remove all unnecessary

files from a copy of APPLEl: , in order to leave room for large text
files on your boot diskette. The following example shows a directory

list of files on a possible text-editing-only diskette named EDITI:

EDITI1:

SYSTEM.APPLE 32 26-JUL-79 6 DATA
SYSTEM.PASCAL 36 4-MAY-79 38 DATA
SYSTEM.MISCINFO 1 4-MAY-79 74 DATA
SYSTEM.EDITOR 45 29-JAN-79 75 CODE
SYSTEM.FILER 28 24-MAY-79 12¢ CODE
< UNUSED > 132 148

When you are handling large text files, the amount of unused space on
the boot diskette is important. During the course of editing, the
file being worked on is usually stored again and again in the workfile

on the boot diskette. To be safe, the contiguous unused space
available for storing the workfile should be at least THREE TIMES the
size of the largest workfile you will store. Since text files can be

74 APPLE PASCAL OPERATING SYSTEM

as large as 38 blocks, an unused area of about 114 blocks would be

safe. Of course, for working on smaller programs and text much less
room is needed.

Note that text files always use diskette space in two-block
increments.

One-drive systems must also have room on the boot diskette for the
original copy of the file being edited, in addition to room needed for
the workfile. If space is a real problem, you could avoid U(pdating

the workfile by always W(riting to the name of the original copy on
the boot diskette, instead. That way, the file SYSTEM.WRK.TEXT would

not be created. The old version of your original copy will be removed

automatically after each time you W(rite the newest version to that
name.

Two-drive systems can keep in another drive the original copy of the
file being edited, so that only the workfile SYSTEM.WRK.TEXT appears
on the boot diskette in the boot drive.

A “WINDOW” INTO THE FILE

The Screen-Oriented Editor is specifically designed for use with video
displays such as the Apple’s TV or monitor. On entering any file, the
Editor displays the start of the file on the second line of the
screen. If the file is too long for the screen, only the first
portion is displayed. This is the concept of a "window". The whole
file is there and is accessible by Editor commands, but only a portion
of the file can be seen through the "window" of the screen. When any
Editor command would take you to a position in the file which is not
displayed, the "window" is moved to show that portion of the file.

The Apple Pascal Editor uses a text window that is 8@ characters wide.
On the Apple’s TV or monitor, only the leftmost 4@ characters of the
window are normally displayed. To see the rightmost 4@ characters of
the window at any time, just press CTRL-A. Frequently, the right half
of the window is just black, as there is no text to display there.
Pressing CTRL-A again shifts you back to the left half of the window.

You can also make the display '"scroll" to the right and left, by
pressing CTRL-Z. In the CTRL-Z mode, the display '"follows" the cursor
everywhere it goes. As the cursor moves, the display is automatically
adjusted to show the text surrounding the cursor. CTRL-Z is cancelled
by CTRL-A and by many other commands.

Most programs will not require you to write beyond the leftmost 4§
characters. For many other text applications, you can adjust the
display’s right margin to column 39 (see the E(nvironment command), so

that the text will be confined to the leftmost 4@ characters of the
window.

EDITOR 75

THE CURSOR

The cursor marks a position in the file and can be moved to any
position occupied by text. The window shows a portion of the file
near the cursor. To see another portion of the file, move the
cursor. Action usually takes place in the vicinity of the cursor.

If the text being displayed is more than 4@ characters wide, the
cursor will disappear when you move it right, beyond the leftmost 4@
characters. To see the cursor and the text around it, you can press
CTRL-A (which shows you the other half of the 8@-character Apple
Pascal window), or you can invoke the "Auto-Follow" option by pressing
CTRL-Z . After CTRL-Z, the Apple’s 4@-character display will
automatically scroll right and left to follow the cursor wherever it
goes, so the cursor never disappears from view. CTRL-A and many other
commands cancel the action of CIRL-Z.

There are a number of commands available to you. Some of the
commands permit additions, changes or deletions of such length that
the screen cannot hold the whole portion of the text that has been
changed. In those cases, the screen shows the portion of the file
where the cursor ended up after the change. In no case is it
necessary for you to operate on portions of the text not seen on the
screen, but in some cases it is optional.

THE PROMPT LINE

The Editor’s prompt line lets you know, first of all, that you are in
the Editor rather than in some other part of the system. The Apple
Pascal operating system is complex enough that you need these
signposts to remember where you are in the system. Secondly, the
prompt line reminds you of some of the commands you can use.

Remember that on the Apple’s 4@—-character screen display, you will
sometimes see only the leftmost 4@ characters of the prompt line. Use
CTRL-A to see the rest of the line.

Here is the complete Editor prompt line:
>EDIT: A(DJST C(PY D(LETE F(IND I(NSRT J(MP R(PLACE Q(UIT X(CHNG Z(AP

The letters and numbers in square brackets which will appear on your
screen at the end of the prompt line are just the version number for
this portion of the program.

NOTATION

The notation used in this chapter is sometimes borrowed from the
notation used in the Editor prompt lines. 1In the Editor prompt lines,
a word enclosed between angle-brackets < like this > tells you that a
particular key is to be pressed. For example, <RET> means that the
RETURN key should pressed at that point, and <ESC> means to press the
ESC key. Either lower-case or upper=-case characters may be used when
typing Editor commands.

76 APPLE PASCAL OPERATING SYSTEM

A BRIEF SCENARIO

This scenario will give you a quick idea of what is involved in using
the Editor, with little or no attempt to explain the terms and
concepts used. Following the scenario is a more detailed discussion
of the same concepts, in the section called A LITTLE MORE DETAIL.

Following that section there is a full discussion of all Editor
commands.

CLEARING THE WORKFILE

From Command level, with your boot diskette (APPLE@: or APPLEl:) in
the boot disk drive (volume #4:), type F for F(ile . The following
prompt line appears:

FILER: G(ET, S(AVE, W(HAT, N(EW, L(DIR, R(EM, C(HNG, T(RANS, D(ATE, Q(UIT
or

FILER: G, S, N, L, R, C, T, D, Q [C.2]

Type N for N(ew . If this message appears:

WORKFILE CLEARED

then you can simply type Q to Q(uit the Filer, and proceed to the next
section. However, if this message appears:

THROW AWAY CURRENT WORKFILE ?

you may be about to lose someone’s valuable workfile. Unless you know
for sure that all files beginning with SYSTEM.WRK on the boot diskette
are dispensable (these files constitute the workfile), you should
respond to the above question by typing an N for '"No'". Now type S for
S(ave , and the system will ask you

SAVE AS WHAT FILE ? or SAVE AS ?

Respond by typing any valid filename (without any .TEXT or .CODE
suffix). For example, you might type

OLD.WRK
The system obediently renames SYSTEM.WRK.TEXT as OLD.WRK.TEXT , and

renames SYSTEM.WRK.CODE (if there is one) as OLD.WRK.CODE . When this
is done, again type N for N(ew , and this time you will see

WORKFILE CLEARED

Type Q for Q(uit to return to the system’s outermost Command level.

EDITOR 77

STARTING A NEW FILE

Now that the workfile has been cleared, type E for E(dit from the
Command level. Soon, this prompt appears:

>EDIT:
NO WORKFILE IS PRESENT. FILE? (<RET> FOR NO FILE <ESC-RET> TO EXIT)

Press the RETURN key to start a new file, and this prompt appears:
>EDIT: A(DJST C(PY D(LETE F(IND I(NSRT J(MP R(PLACE Q(UIT X(CHNG Z(AP

You can now type I to enter I(nsert mode, and then proceed to type
your program or text. When each portion of the insertion is complete,
you press CTRL-C to accept that portion of the insertion and terminate
I(nsert mode. If you wish to add more text, type I again to re-enter
I(nsert mode. Further typing will insert text at the cursor position,
until you terminate the latest insertion by pressing CTRL-C.

If you wish to remove unwanted text after CTRL-C has terminated an
insertion, move the cursor to any appropriate part of the text (using
the arrow-keys), and then type D to enter D(elete mode. In D(elete
mode, moving the cursor erases the characters moved over. Terminate
each deletion by pressing CTRL-C.

For example, you might type I for I(nsert, and then type

PROGRAM EXAMP;
BEGIN

WRITE (AN APPLE A DAY")
END.

Terminate this insertion by pressing CTRL-C.

UPDATING THE WORKFILE

Finally, when the text is the way you want it for now, type Q for
Q(uit and then type U for U(pdate. The system stores your file in the
workfile, a file on the boot diskette called SYSTEM.WRK.TEXT , and you
are once again at the outermost Command level.

If your file was a Pascal program (as the example is), you may now
type R for R(un, and the system will automatically attempt to compile
and run the workfile, storing the compiled version of your program (if
compilation is successful) as SYSTEM.WRK.CODE . If APPLEl: is your
boot diskette, APPLE2: must be in another drive during compilation.
APPLE2: is not necessary if APPLE@: is your boot diskette.

If you wish to change your file for any reason, simply type E for

E(dit again. Now a workfile is present, and the system automatically
reads the workfile into the computer, ready for more Editing.

78 APPLE PASCAL OPERATING SYSTEM

SAVING THE WORKFILE

One-Drive Method

On one-drive systems, you can only S(ave one version of the workfile
(usually .TEXT) onto another diskette. To save more than one workfile
version (usually .TEXT and .CODE), you must first S(ave all versions
onto the boot diskette, and then T(ransfer each version to the other
diskette. Then you can R(emove the S(aved files from the boot
diskette. Here is how it might be done:

When the U(pdated workfile contains your finished product, or when you
need to start a new file for another project, type F from Command
level to enter the Filer. From the Filer, type S for S(ave and you
are prompted:

SAVE AS WHAT FILE ? or SAVE AS ?

You should respond by typing a valid boot diskette file specification
(without any .TEXT or .CODE suffix). The system then renames all
versions of the workfile to the filename which you have specified.

For example, if APPLE@: is your boot diskette, you might respond by
typing
APPLE(: PROGRAM1

The system obediently renames SYSTEM.WRK.TEXT as PROGRAMI1.TEXT, and
SYSTEM.WRK.CODE (if it exists) as PROGRAM1.CODE , on the boot
diskette. This step makes the former workfile safe from being
accidentally erased by a N(ew command, and tells the system that the
workfile is gone.
Now type T for T(ransfer. The system prompts

TRANSFER WHAT FILE ? or TRANSFER ?
You should respond by typing the complete file specification
(including the suffix, this time) for one version of your saved file.
In the example, you might type

APPLE@:PROGRAM1 . TEXT
When you press the RETURN key, the system asks

TO WHERE ?
Now type the complete file specification for the destination file.
If you wish to save your PROGRAML files on diskette MYDISK: , for

example, you would type

MYDISK:PROGRAMI.TEXT

EDITOR 79

The disk drive whirrs, and soon this message appears:

PUT IN MYDISK:
TYPE <SPACE> TO CONTINUE

Follow the directions, putting diskette MYDISK: in the disk drive and
pressing the Apple’s spacebar. When PROGRAML.TEXT has been
successfully transferred to MYDISK: , you can put APPLE@: back in the
disk drive.

Now, repeat the T(ransfer command, this time saving the file
PROGRAM1.CODE (if it exists) onto MYDISK: . When that transfer is
complete, again put APPLE@: back in the disk drive.

To prevent your boot diskette from becoming cluttered up with files
that you have already saved elsewhere, you may wish to remove the
PROGRAM1 files from APPLE@: at this time. Type R for R(emove, and
when the Filer prompts

REMOVE WHAT FILE ? or REMOVE ?

type the complete file specification (including the .TEXT or .CODE
suffix) of one file that you wish removed from the boot diskette. For
example, you might respond by typing

APPLE@:PROGRAM1 . TEXT
The Filer soon says

APPLE(@: PROGRAMI1 . TEXT —-> REMOVED
UPDATE DIRECTORY ?

This gives you a last chance to avoid removing the specified file by
typing an N response. If you type a response of Y , the file
PROGRAM1.TEXT is removed from APPLE@:‘s directory, and the system
forgets that file’s existence. You can repeat the R(emove command as
often as you wish, of course, until all unnecessary files have been
removed.

Multi-Drive Method

On multiple drive systems, you can S(ave all the versions of the
workfile (usually .TEXT and .CODE) directly onto another diskette,
using a filename of your choice. Then N(ew erases the workfile from
the boot diskette. This is the process:

When the U(pdated workfile contains your finished product, or when you

need to start a new file for another project, type F from Command
level to enter the Filer. From the Filer, type S for S(ave and you
are prompted:

SAVE AS WHAT FILE ? or SAVE AS ?

80 APPLE PASCAL OPERATING SYSTEM

When you respond by typing any valid disk file specification (without
any .TEXT or .CODE suffix), the system saves all versions of the
workfile under the filename which you have specified. For example, if
you respond by typing

MYDISK:PROGRAMI1

the system saves SYSTEM.WRK.TEXT as PROGRAM1.TEXT, and SYSTEM.WRK.CODE
(if it exists) as PROGRAM1.CODE , on diskette MYDISK:

You can now type the Filer command N(ew , which erases all versions of
the workfile on the boot diskette, and the creation or editing process
can begin again.

RE-EDITING AN OLD FILE

One-Drive Method

On one-drive systems, you must first use the Filer to T(ransfer onto
your boot diskette the file you want to edit. Only then can you use
the Filer to G(et that file.

From Command level, with your boot diskette (APPLE@: or APPLEl:) in
the disk drive, type F to enter the Filer. Now put into the disk

drive the diskette containing the file you wish to edit. Type T for
T(ransfer, and when you see the message

TRANSFER WHAT FILE ? or TRANSFER ?

respond by typing the complete file specification (including the .TEXT
suffix) for the textfile you want to edit. For example, to re-edit
the file saved on MYDISK: in the previous section, you mignt type

MYDISK:PROGRAM1.TEXT

When you press the RETURN key, the disk whirrs and this message appears:

TO WHERE ?

At this point you should type the complete file specification (again
including the .TEXT suffix) for the file as it will appear on your
boot diskette. For example, if you are using APPLE@: as your boot
diskette, you might type

APPLE@: PROGRAML . TEXT
After some more disk-whirring, you will be prompted
PUT IN APPLE@:

TYPE <SPACE> TO CONTINUE

EDITOR 81

Put APPLE@: in the disk drive, press the spacebar, and a copy of
PROGRAM1.TEXT is saved on APPLE@: .

Now that the file you want to edit is on the boot diskette, you can
type G to G(et that file. When you see the prompt

GET WHAT FILE ? or GET ?

type the file specification (without the .TEXT suffix, this time) for
the boot diskette copy of the file you want to edit. For the example
we have been showing, you would respond to the prompt by typing

APPLE@: PROGRAM1

When the Filer has cleared away any previous workfile (as the command
N(ew did), it marks the specified file as the next workfile. Since
only the .TEXT version of PROGRAMI1 exists on APPLEf: , you will soon

see the message
TEXT FILE LOADED

Now type Q to Q(uit the Filer, and from Command level type E for
E(dit. The file designated by G(et is automatically read into the
Editor, ready for work.

Multi-Drive Method

On multiple-drive systems, you can use the Filer to G(et the file you
want to edit, directly from any diskette in any available drive.

Put your boot diskette (APPLEl: or APPLE@:) in the boot drive and put
into another drive the diskette containing the old textfile you wish
to edit. From Command level, type F to enter the Filer, and then type
G for G(et . When you see the prompt

GET WHAT FILE ? or GET ?

type the file specification for the file you want to edit. For

axample, to re-edit the file saved on MYDISK: in the example earlier
in this section, you might respond to the prompt by typing

MYDISK: PROGRAM1

When the Filer has cleared away any previous workfile (as the command
N(ew did), it marks the specified file as the next workfile. Since
both .TEXT and .CODE versions of PROGRAM1 exist on MYDISK: , you will
soon see the message

TEXT & CODE FILE LOADED

82 APPLE PASCAL OPERATING SYSTEM

This does not mean that PROGRAM1 has been transferred to your boot
diskette or into memory; you must continue to leave MYDISK: in its
drive. Now type Q to Q(uit the Filer, and from Command level type E
for E(dit. The file designated by G(et is automatically read into the
Editor, ready for work. THEN you may take MYDISK: out of its drive,
if you wish.

A LITTLE MORE DETAIL

ENTERING THE EDITOR

When the COMMAND: prompt line is on the screen, and your boot diskette
(usually APPLE@: or APPLEl:) is in the boot drive (volume #4:), type
an E for E(dit . If the system already has a text workfile (see
WORKFILES, below), that file is automatically read into the Editor,
ready for work. If the system does not have a workfile yet, or if
only a code workfile exists, this prompt line appears on first
entering the Editor:

>EDIT:
NO WORKFILE IS PRESENT. FILE? (<RET> FOR NO FILE <ESC-RET> TO EXIT)

Of course, you may not be able to see the entire prompt line at once.
Use CTRL-A to flip back and forth between the rightmost 4@ characters
of the display and the leftmost 4@ characters.

There are three ways to answer this opening prompt line’s question:

l. You can respond by typing the file specification of any textfile
that already exists on diskette.

On one-drive systems, you must specify a textfile on the boot
diskette. On multi-drive systems, the diskette containing the
specified file may be in any drive. The Editor will read the
specified file into the computer, and then display the first part of
the file’s text on the screen, ready for Editing.

For example, you might type
APPLE(@: PROGRAM1
When you press the RETURN key , the file named PROGRAM1.TEXT is

retrieved from diskette APPLE@: and the text of that file is
displayed on the screen.

EDITOR 83

2. You can answer by pressing the RETURN key: <RET>

This tells the system that you are starting a new file. The only
thing visible on the screen after doing this is the normal EDIT
prompt line:

>EDIT: A(DJST C(PY D(LETE F(IND I(NSRT J(MP R(PLACE Q(UIT X(CHNG Z (AP

A new file has been started and currently has nothing in it. Type
I to begin I(nserting a program or text. No diskette version of

this new file exists until you Q(uit the Editor and U(pdate the
workfile or W(rite to some other disk file.

3. You can answer by pressing the ESC key and then pressing the
RETURN key: <ESC-RET>

This causes the Editor to return you to the system Command level,
a useful option when you didn’t mean to type E .

WORKEFILES

The workfile is a diskette '"scratchpad" copy of the file on which you
are currently working. Each time you Q(uit the Editor and U(pdate
(see LEAVING THE EDITOR, at the end of this section), the latest
version of your program or text is saved in the workfile, under the
name SYSTEM.WRK.TEXT on the boot diskette. This is a very convenient
arrangement, as you will see.

The first convenience comes each time you type E to enter the Editor
from Command level. No questions are asked if a workfile already
exists (in a file named SYSTEM.WRK.TEXT on the boot diskette). The
workfile is automatically read into the computer and displayed on the
screen, ready for editing. If you keep the workfile U(pdated to the
latest version of a job in progress, you can turn on the computer at

any time, type E from Command level, and you will immediately be ready
to work on your job again.

Editing using the workfile has another advantage when you are working

on a program. You can Q(uit the Editor and U(pdate the workfile, and

then immediately type R from Command level to compile and R(un the
workfile automatically. Following a successful compilation, the

compiled version of the workfile is automatically saved as
SYSTEM.WRK.CODE . After the code version of your program has been
executed, typing E from Command level will automatically read the text
version of your program back into the Editor for more work. Thus you
are almost completely spared the constant typing of filenames during
program development.

Ordinarily, the workfile is created by Q(uitting the Editor and

U(pdating the workfile. There is also one other way to make the
system behave as if there were a workfile. From the Filer, the G(et

84 APPLE PASCAL OPERATING SYSTEM

command can be used to designate any textfile as the next workfile.

The file so designated will be read into the computer when you next

enter the Editor, just as if that file were on the boot diskette and
named SYSTEM.WRK.TEXT . This designation is "forgotten'", however,
each time you boot the system.

When you have completed work on your file, you will want to enter the
Filer and S(ave the latest U(pdated workfile under some other name, or
else you will Q(uit the Editor by W(riting to a disk file of some
other name. But during the development of a program or text file, it
is very convenient to keep the latest version saved in the workfile.

To edit a different file when a workfile already exists, the workfile
must first be cleared, by using the Filer’s N(ew command (if you wish
to start a new file) or the G(et command (if you wish to re-edit an
old file). Make sure that you have S(aved the latest version of the
workfile under another name, before you clear the workfile, as all
versions of SYSTEM.WRK will be erased.

SOME HIDDEN CHARACTERS

The Apple II keyboard doesn’t appear to have the left and right bracket
symbols [and] . But they can by typed. The left bracket is
produced by typing CTRL-K. The right bracket is produced by typing
SHIFT-M. You might consider marking these special characters on your
keyboard.

MOVING THE CURSOR

In order to edit, it is necessary to move the cursor. On the keyboard
are two "arrow-keys'" which move the cursor right and left. 1In
addition to these cursor-moving keys, CTRL-0 moves the cursor up one
line, and CTRL-L moves the cursor down one line. Some people find it
convenient to mark these last keys with an up-arrow and a down-arrow,
to help them remember. You can move the cursor only when one of these
prompt lines is at the top of the screen: EDIT , DELETE , or ADJUST .

If you type a number before you type a cursor move, the cursor moves
that number of characters or lines in the direction indicated. Typing
P moves the cursor to the next "page", a little more than a screenful
away from the current cursor position. Also, notice how the spacebar
and the RETURN key move the cursor. Sometimes these moves are useful.

Vertical motion of the cursor is made without regard to the text on
the page. But for horizontal moves, the cursor does not like to be

outside of the text of the program. For example, suppose the cursor
appears after the "N" in "BEGIN" :

EDITOR 85

PROGRAM EXAMP;
BEGIN
WRITE (“AN APPLE A DAY’)
END.
(Actually, the cursor is "on" the invisible RETURN character that ends

every line.) If you press the right-arrow key, the cursor moves to
the "W" in "WRITE" :

PROGRAM EXAMP;
BEGIN

WRITE (‘AN APPLE A DAY’)
END.

Similarly, pressing left-arrow key now moves the cursor back to after
the "N" in "BEGIN".

If it is necessary to change "WRITE(’AN APPLE A DAY’)" found in the
third line to "WRITE(“AN ORANGE A DAY’)", the cursor must first be
moved to the correct spot.

For example: if the cursor is on the "P" in "PROGRAM EXAMP;", go down
two lines by pressing CTRL-L twice. After the first CTRL-L the cursor
is on the "B" in "BEGIN"; and after the second CTRL-L the cursor is in
front of the "W" in "WRITE".

PROGRAM EXAMP;
BEGIN

WRITE (AN APPLE A DAY’)
END.

Now, using the right-arrow key, move until the cursor sits on the "A"
in "APPLE".

Note that with downward and upward cursor moves (using CTRL-L and
CTRL-0) the cursor may at times appear to be outside the text. In

the last illustration, the cursor appears to be in the blank space
before the "W" in "WRITE". As far as the Editor knows, however, the
cursor is actually on the "W" in "WRITE". So do not be surprised
when, on first pressing the right-arrow key, the cursor jumps to the
"R" in "WRITE". In other words, when the cursor appears to be outside
the text, it is conceptually on the closest character to the right or
left.

Remember that the Apple’s TV screen only shows the leftmost 40
characters of the system’s 8@-character-wide display. When the cursor
disappears into the hidden portion of the Pascal display, you can
follow it by pressing CTRL-A . Even easier, you can initiate
"Auto-follow" mode, by pressing CTRL-Z . After CIRL-Z , Apple’s
4@-character screen automatically scrolls left and right to keep the
cursor visible. CTRL-A and many other commands cancel CTRL-Z .

86 APPLE PASCAL OPERATING SYSTEM

USING I(NSERT MODE

The EDIT prompt line shows the command option I(nsrt (or "Insert", if
you like your words with all their vowels and without parentheses
running amok inside them). To Insert an item, first move the cursor
to the correct position, and then type I . You must always move the
cursor to the correct position BEFORE typing I . Earlier, the cursor
was moved to the "A" in "APPLE". Now, on typing I , an insertion will
be made just before (just to the left of) the "A". The rest of the
line starting with the "A" will be moved to the right hand side of the
screen. If the insertion is lengthy, the right hand portion of the
line (beginning with "A") will be moved down to allow room on the
screen for more inserted text to appear. After typing I the following
prompt line should appear on the screen:

>INSERT: TEXT [<BS> A CHAR, A LINE] [<ETX> ACCEPTS, <ESC> ESCAPES]

If that prompt line did not appear at the top of the screen, you are
NOT in Insert mode. You may have typed a wrong key.

If the cursor was at the "A" in "APPLE" when you typed I , the Insert
prompt line appeared and the remaining portion of that line (beginning
with "A") was pushed to the right hand edge of the screen. "ORANGE"
may be inserted by typing those six letters. They will appear on the
screen as they are typed.

There remains one more important step. The choice at the end of the
prompt line indicates that <ETX> (which means pressing CTRL-C) accepts
the insertion, while <ESC> (which means pressing the ESC key) rejects
the insertion so that the text remains as it was before typing I .

(Portion of screen when Inserting ORANGE)

PROGRAM EXAMP;
BEGIN

WRITE (‘AN ORANGE APPLE A DAY’)
END.

(Portion of screen after Insertion followed by CTRL-C)

PROGRAM EXAMP;
BEGIN

WRITE (AN ORANGEAPPLE A DAY’)
END.

EDITOR 87

(Portion of screen after Insertion followed by <ESC>)

PROGRAM EXAMP;
BEGIN

WRITE(’AN APPLE A DAY’)
END.

It is legal to Inmsert a carriage return. This is done by doing a

<RET> (that is, pressing the RETURN key) while in the Insert mode and
causes the Editor to start a new line.

USING D(ELETE MODE

The Delete mode works somewhat like the Insert mode. Having inserted

the word "ORANGE" into the EXAMP program and having typed CTRL-C, "APPLE"
must now be deleted. Move the cursor so that it is placed directly on
the first character that you wish to delete. Then type D to put the
Editor into Delete mode. The following prompt line should appear.

SDELETE: < > <MOVING COMMANDS> [<ETX> TO DELETE, <ESC> TO ABORT]

Remember that <ETX> means to type CTRL-C.

Each time the right-arrow key is pressed, the character on which the
cursor is sitting disappears. Pressing the left-arrow key will erase
characters to the left of the first cursor position. In this example,
pressing the right-arrow key five times will cause the word "APPLE" to
disappear. To terminate the Deletion, you have the same choice you
had with Insert. Use <ETX> (by typing CTRL-C) to make the proposed
deletion permanent. Use <ESC> (by pressing the ESC key) to cancel the
proposed deletion and restore the original text.

It is legal to delete a carriage return. At the end of the line,
enter Delete mode and press the right-arrow key until the cursor moves
to the beginning of the next line.

LEAVING THE EDITOR

When all the changes and additions have been made in your program or
text, you will want to exit the Editor and "save" a copy of the
modified program or text. This is done by typing Q for Q(uit, which
will cause this prompting display:

>QUIT:
U(PDATE THE WORKFILE AND LEAVE

E(XIT WITHOUT UPDATING
R(ETURN TO THE EDITOR WITHOUT UPDATING

W(RITE TO A FILE NAME AND RETURN
S(AVE WITH SAME NAME AND RETURN

88 APPLE PASCAL OPERATING SYSTEM

The most elementary way to save a copy of your present file onto disk
is to type U for U(pdate. This causes your file to be saved in the
workfile on the boot diskette, under the filename SYSTEM.WRK.TEXT.
With the workfile thus saved, it is possible to use the R(un command,
provided of course the file is a program.

It is also possible to use the S(ave option in the Filer to save the
diskette workfile under its own filename before using the Editor to
modify or create another file. Remember that the Filer’s N(ew command
can erase the workfile SYSTEM.WRK.TEXT at any time, and that the
Editor’s U(pdate always stores the just-edited file under the same
filename SYSTEM.WRK.TEXT. You will not want SYSTEM.WRK.TEXT to be
your only copy of a file, once you are through working on it.

It is a good idea to temporarily Q(uit and U(pdate your file about
every 15 minutes or so. This way, in case of accident (such as the
power going out, or your mistakenly deleting an important part of your
file), you are not likely to lose more than 15 minutes worth of typing.

These are sufficient commands to edit any file desired. The next
section describes many more commands in the Editor which make editing
even easier.

THE EDITOR COMMANDS

90 General Information

90 The Cursor

91 The Screen

91 Repeat-factors

91 The Set Direction

92 Cursor Moves

92 Moving Commands

92 J (ump

93 P(age

93 F(ind

94 Set Direction

94 Repeat-factor

94 L(iteral or T(oken Search

95 Target String and Delimiters

95 ESC Option

95 Same-string Option

97 Text Changing Commands

97 I(nsert

98 Text Formats

98 With A(uto-indent TRUE, F(illing FALSE
99 With A(uto-indent FALSE, F(illing TRUE
100 With A(uto-indent TRUE, F(illing TRUE
101 With A(uto-indent FALSE, F(illing FALSE

EDITOR 89

101
103
104
104
105
107
108
108
109
109
109
110
110
111
113
113
114
116
116
116
118
119
119
119
120
120
120
120
121
122
122
122
122
123
123
124

D(elete
Z(ap
C(opy
From a Diskette F(ile
From the Copy B(uffer
X(change
R(eplace
Set Direction
Repeat-factor
L(iteral or T(oken Search
V(erify Option
Strings
String Delimiters
Same-string Option
Formatting Commands
A(djust
M(argin
Miscellaneous Commands
S(et
M(arker
E(nvironment
The Environment Options:
A(uto-indent
F(illing
L(eft Margin
R(ight Margin
P(aragraph Margin
C(ommand Character
T(oken Default
V(erify
Q(uit
U(pdate the Workfile
E(xit without updating
R(eturn to the Editor
W(rite to any Disk File
S(ave to original Disk File

GENERAL INFORMATION

The Cursor

The
the
the
you

"cursor" is the white rectangle that indicates your position in
file. In general, special '"cursor moves" (see below) are used in

Editor to move the cursor through the text and place it just where
want the next command to have its effect. Once you have initiated

a particular command, the same cursor moves may have an additional
function, such as deleting text or adjusting the position of lines.

It should be pointed out that not all commands affect the character on which

the
the
the

90

cursor is actually sitting. Some commands do affect the character AT
cursor position (eXchange, for example, and Delete when used with
right-arrow key). But other commands affect the first character to

APPLE PASCAL OPERATING SYSTEM

the LEFT of the cursor position (for example, Delete when used with the
left—-arrow key). Still other commands affect the place BETWEEN the
cursor position and the first character to its left (for example,
Insert). A little experience, or a careful reading of the detailed
command descriptions, will teach you what to expect.

THE SCREEN

The Apple Pascal system’s display is always 8@ characters wide, but the
Apple screen normally shows only the leftmost 4@ characters. If the
cursor should disappear into the hidden half of the display, use CTRL-A
to see the other half of the display. To initiate "Auto-follow" mode,
in which the Apple screen automatically scrolls left and right to keep
the cursor visible, use CTRL-Z . CTRL-A and many other commands cancel
CTRL=-Z .

Repeat-Factor

Most of the cursor moves, and some of the command options, allow
repeat-factors. A repeat-factor is a number which is typed
immediately before issuing a cursor move or command. The cursor move
or the command option is then repeated for the number of times
indicated by the repeat-factor. For example, typing 2 followed by
CTRL-L causes the cursor move to be executed twice, moving the cursor
down two lines. Cursor moves and commands which allow a repeat-factor
assume the repeat-factor to be 1 if no number is typed. Typing a
slash (/) before a cursor move or a command indicates an "infinite"

repeat-factor, and causes the move or command to be repeated as many
times as possible in the file.

The Set Direction

The first character displayed on most Editor prompt lines is a
"direction indicator'". On entering the Editor, the set direction is
"forward". A '"greater than'" (>) character indicates "forward"
direction. A "less than" (<) character indicates "backward" (or
reverse) direction. When the EDIT or the DELETE prompt line is
showing, you can type the > or the < key (with or without the SHIFT
key) to change the set direction.

Typing one of these keys: Changes the set direction to:
5 < - backward
. > + forward

EDITOR 91

Certain commands and certain cursor moves are affected by the set
direction. If the set direction is forward, then they operate forward
through the file, that being the standard direction of reading
English. Forward operations begin at the current cursor position and
proceed toward the end of the file. Backward is the reverse
direction. Backward operations begin at the current cursor position
and proceed toward the beginning of the file. Where the set direction
affects a command, this is specifically noted in the detailed command
description.

Cursor Moves
If you type: The cursor moves:
CTRL-L down
CTRL-0 up
right-arrow key right
left—arrow key left
spacebar in the set direction

CTRL-I or TAB key in the set direction, to the next tab-stop
(tab-stops are set every 8 spaces
across the screen)

RETURN key in the set direction, to the beginning of
the next line

(equals) to the beginning of the last text Inserted,
Found, or Replaced

Repeat-factors can be used with any of the above commands (except the
"equals" command.

The Editor maintains the column position of the cursor when you use
CTRL-0 and CTRL-L, even when this means that the cursor appears
outside the text. If the cursor appears to the right of a line of
text, the Editor acts as though the cursor were immediately after the
last character in the line. If the cursor appears to the left of a
line of text, the Editor acts as though the cursor were on the first
character in the line.

MOVING COMMANDS

J(ump

Jump mode is reached by typing J for J(ump while at the Edit level.
On entering Jump mode the following prompt line appears:

>JUMP: B(EGINNING E(ND M(ARKER <ESC>

92 APPLE PASCAL OPERATING SYSTEM

Typing B for B(eginning moves the cursor to the beginning of the file,
displays the Edit prompt line and the first page of the file. Typing

E for E(nd moves the cursor to the end of the file, displays the Edit
prompt line and the last page of the file. Typing M for M(arker
causes the Editor to display the prompt line:

JUMP TO WHAT MARKER?

If you respond by typing the name of a marker that exists in the file,
when you press the RETURN key the cursor is placed at the marker
position in the text. If you type a marker name that does not exist
in the file, this message is given:

ERROR: NOT THERE. PLEASE PRESS <SPACEBAR> TO CONTINUE.

and the cursor is not moved. Placing markers in the text is explained
under S(et M(arker , in the Miscellaneous Commands.

P(age

Page command is executed by typing P while at the Edit level.
Depending on the set direction, indicated at the beginning of the

EDIT prompt line, Page command moves the cursor somewhat more than one
whole screenful up or down. The cursor always moves to the start of

a line. A repeat-factor may be used before this command, for moving
several pages.

F(ind

Find mode is reached by typing F for F(ind while at the Edit level.
On entering Find mode one of the following prompt lines appears,
depending on the setting of the Environment’s T(OKEN DEFault option
(see S(et E(nvironment, in Miscellaneous Commands):
SFIND[1]: L(IT <TARGET> =>
if the Environment’s T(OKEN DEFault option is set to TRUE, or
>FIND[1]: T(OK <TARGET> =>
if the Environment’s T(OKEN DEFault option is set to FALSE.
Find mode searches through a file in the set direction, finds the

repeat-factor-th occurrence of the specified string of characters
<TARGET>, and places the cursor at the end of that string.

EDITOR 93

Set direction

The F(ind command searches for the specified occurrence of the target
string beginning at the present cursor position and scanning through
the text in the set direction (indicated by the arrow at the beginning
of the prompt line). An occurrence of the target string will be found
only if it appears in that portion of the text which lies between the
cursor and the end of the file toward which the search is

progressing. See the section on the set direction (in this chapter,
under General Information) in order to change the set direction

arrow. If the required occurrence of the target string is not found
by searching through the text in the set direction, this message
appears:

ERROR: PATTERN NOT IN THE FILE PLEASE PRESS <SPACEBAR> TO CONTINUE.

Remember, however, that the search does not "wrap around". That
portion of the file between the cursor and the end of the file in the
direction OPPOSITE the set direction is not searched.

Repeat=factor

The repeat-factor is an integer from 0 to 9999 which may be typed just
before typing the F for F(ind. It is shown on the prompt line in
square brackets: [l] , for example. If a repeat-factor of n is
specified, the cursor is placed after the n-th occurrence of the
target string. If no repeat-factor is specified, a repeat-factor of
one is used. If a repeat-factor of / is used, the cursor is placed
after the last occurrence of the specified string.

L(iteral or T(oken search

The target string is treated somewhat differently, depending on

whether Literal search or Token search is selected. The default

setting of the search mode is set in the Environment. The FIND prompt
line indicates only the non-default choice: L(IT or T(OK . If you do
not specify a search mode, the default search mode (the one which is

NOT mentioned on the prompt line) is used. To use Token search when

the default is Literal search (prompt line says T(OK), type T after

the prompt line and before the target string. To use Literal search
when the default is Token search (prompt line says L(IT), type L

before typing the target string. Note: nothing appears to happen when
you type L or T ; the letter just appears where you are about to type
the target string. See S(et E(nvironment in Miscellaneous Commands

for more detail about Literal and Token search modes. In Literal search
mode, the Editor will look for ANY occurrence of a string of characters
that exactly matches the <TARGET> string. In Token search mode, the
Editor will look for ISOLATED occurrences of the <TARGET> string. The
Editor considers a string isolated if it is surrounded by any combination
of delimiters, where a delimiter is any character that is not a number
or letter.

94 APPLE PASCAL OPERATING SYSTEM

Target string and delimiters

To allow the target string to contain any characters (including RETURN
characters), the target string must be typed using special rules. In
particular, the target string must be set off by characters called
"delimiters". Both delimiters of the target string must be the same
character. One delimiter must precede the first character of the
string, and the same delimiter must follow the last character of the
string.

The Editor allows any character which is not a letter or a number to
be a delimiter. This lets you choose the delimiter. The most common
choice is the slash (/) because it is a lower-case character that is

not often found in the text, and it is easy to type. If you forget to
precede the target string with a correct delimiter character, you will
be told:

ERROR: INVALID DELIMITER. PLEASE PRESS <SPACEBAR> TO CONTINUE.

Just try again, this time beginning with a correct delimiter.

ESC option

At any point during your response to the FIND prompt, you can abandon
this command and return to the Edit level by pressing the ESC key.

S(ame-string option

Typing S instead of the delimited target string tells the Editor to
use the same string that was last specified for the target string (the
target string may have been specified either in Find mode or in
Replace mode). From the Editor, typing the command

FS

will cause the cursor to jump to next occurrence of the previously
specified target string. When the set direction specifies searching
through the text in the reverse direction (toward the beginning of the
file), FS may appear to have no effect. This is because Find mode
places the cursor just AFTER the found occurrence of the target
string. Unless the cursor is moved beyond the FIRST character of the
previously found occurrence of the target string, FS will just keep
finding the same occurrence of the target string again and again.

Note: The Environment (see S(et E(nvironment , in Miscellaneous

Commands) displays the current <TARGET> string which will be invoked
by typing S as a string response.

EDITOR 95

EXAMPLE 1:

Suppose you are editing a file containing the following text:

PROGRAM STRINGI;
BEGIN
WRITE (‘TOO WISE *);
WRITE(’YOU ARE’);
WRITELN(’,”);
WRITE(“TOO WISE *);
WRITELN(’YOU BE.’)
END.

In the STRINGl program, with the cursor at the first P in
the line

PROGRAM STRING1;
type F to select Find mode. When the FIND prompt line appears, type
‘WRITE’

The two single quote marks (or two of some other delimiter) MUST be
typed. The prompt line should now appear as:

SFIND[1]: L)IT <TARGET> =>"WRITE’
When you type the last quote mark, the cursor jumps immediately to the
first character following the E in the first occurrence of the Token

target string

WRITE

EXAMPLE 2:

Again in the STRINGl program, with the cursor at the E of END. , type:
<2F

This prepares the system to Find the second pattern (you typed a
repeat-factor of 2) in the reverse direction (you changed the set
direction by typing <). When the prompt line appears, type

/WRITELN/
The prompt line should read:
<FIND[2]: L)IT <TARGET> =>/WRITELN/
When you type the last / , the cursor will move immediately to the

first character following the N in the second occurrence (searching
backward through the file) of the Token string WRITELN .

96 APPLE PASCAL OPERATING SYSTEM

EXAMPLE 3:
First, type
F/WRITE/

This locates the first occurrence of the Token string WRITE ,
searching in the set direction. Now, typing

FS
will make the prompt line flash:
S>FIND[1]: L)IT <TARGET> =>S
and the cursor will appear at the next occurrence of WRITE .

TEXT CHANGING COMMANDS

I(nsert

Insert mode is reached by typing I for I(msert while at the Edit
level. On entering Insert mode the following prompt line appears:

>INSERT: TEXT [<BS> A CHAR, A LINE] [<ETX> ACCEPTS, <ESC> ESCAPES]

Insert mode allows you to put new information into the text you are
creating or editing. The characters that you type in this mode are
inserted between the character on which you placed the cursor and the
character that was immediately to the cursor’s left.

In order to maximize speed, the Editor does not constantly re-write
the entire screen as you insert each new character. Instead, it makes
a gap in the text, just where your insertion will appear, and then
waits for you to type. Often you will have to terminate your
insertion (by pressing CTRL-C) in order to see exactly how the
insertion will look in its final form.

If you make a mistake while typing in Insert mode, just use the left-
arrow key to backspace over your inserted characters. To delete the
entire line that you are in the process of inserting, back to and
including the previous RETURN character, type CTRL-X (some external
terminals use the RUB or RUBOUT key, which generates ASCII DEL). The
Insert prompt line helps you remember these mistake-correcting
possibilities by '"<BS> A CHAR" and " A LINE". <BS> stands for
the left-arrow (BackSpace) key and stands for CTRL-X . You can
erase only the text that you have inserted since entering Insert mode.

The set direction does not affect the Insert mode.

EDITOR 97

At any time during an insertion, you can cause the Editor to accept
the inscrtion as it stands (making it a part of your file) by pressing
CTRL-C (which the prompt line calls <ETX>). Until you press that

CTRL-C you can cause the Editor to forget everything you have typed
since entering Insert mode, by pressing the ESC key.

If an insertion is made and accepted (using CTRL-C), that insertion is
also available (until the next insertion or deletion) in the Copy
buffer, for use by the C(opy command. You can use this to duplicate
your last insertion as many times as you wish. However, if <ESC> is
used to reject the insertion, the Copy buffer is left empty.

The maximum size of a file is about 184@@ bytes, or 38 diskette

blocks. When your file can hold only another few hundred bytes, you
may receive this warning as you begin typing in Insert mode:

ERROR: PLEASE FINISH UP THE INSERTION PLEASE PRESS <SPACEBAR> TO CONTINUE.

When you respond by pressing the spacebar, you will still be in Insert
mode. You can continue your insertion, but you have been warned that
your file is almost full. You should start a new file right away or

split the present file into two parts. If you continue typing in
Insert mode, you will soon receive this more urgent message, when your

file has exceeded the amount of text it can hold:

ERROR: BUFFER OVERFLOW!!!! PLEASE PRESS <SPACEBAR> TO CONTINUE.

Pressing the spacebar terminates your insertion, and any further
attempts to initiate Insert mode cause this message:

ERROR: NO ROOM TO INSERT. PLEASE PRESS <SPACEBAR> TO CONTINUE.

Insert mode is immediately terminated, and you are not allowed to add
any more text to your file.

Text Formats

There are two basic ways that text can be formatted as you Insert it.
The formatting scheme is determined by the settings of various options
in the Environment (see S(et E(nviromment, in Miscellaneous Commands).
A(uto-indent is usually used for writing Pascal programs, while
F(illing is most often used in writing text such as letters and other
documents.

Inserting with A(uto-indent TRUE , F(illing FALSE

This is the normal setting of the Environment when you are writing
Pascal programs. During an Insertion, the margins set in the
Environment are ignored. Instead, you must terminate each line
yourself, and start a new line, by pressing the RETURN key. Each new
line automatically starts at the same indention as the first non-space
character of the preceding text line.

98 APPLE PASCAL OPERATING SYSTEM

A new indentation can be started by typing a space (to indent more) or
by pressing the left-arrow key (to indent less) or by typing CTRL-Q
(zero indentation) as the first character of any new line. The A(djust
command can also be used to create a new indentation for a line.

If you use CTRL-C to terminate an insertion immediately after
pressing the RETURN key (to start a new line), the cursor will
automatically be indented the same amount as the line in which

you began your insertion. This feature, which can be very useful in
writing Pascal programs, ignores any change you may have made to the
indentation of the insertion’s first line, and ignores the
indentation of intervening lines.

A paragraph cannot be formatted with the M(argin command while Auto-
indent is set to True.

EXAMPLE:

With the Environment’s A(uto-indent option set to TRUE, and the

F(illing option set to FALSE, enter I(nsert mode and type the
following sequence of keys (the names of special keys are enclosed in
angle brackets <like this>):

ONE<return>
<space><space><space>TWO<return>
THREE<return>

<left-arrow>FOUR

This should create the indentations shown at the left below:

ONE Original indentation
TWO Indentation changed by <space> <space> <space>
THREE <return> causes auto-indentation to level of line above
FOUR <left-arrow> changes indentation from level of line above

Inserting with A(uto-indent FALSE , F(illing TRUE

This is the normal setting of the Environment when you are writing

text such as letters and other documents. It is the only Environment

in which the M(argin command will function. The Editor forces all
Insertions to be between the margins set in the Environment. The

instant a new word (as you are typing it) exceeds the set R(ight

margin, a RETURN character is automatically inserted before the word

and the entire word (or as much of it as you have typed at that point)

is placed beginning at the set L(eft margin. In the Editor, a '"word"

is any text character or characters bounded by any two 'word

delimiters", where a word delimiter is a space, a RETURN

character, the beginning or end of the file, or the beginning or end

of the current insertion (before CTRL-C is pressed). The hyphen is not a
recognized word delimiter. If two or more RETURN characters are typed in
succession, the next text is started at the set P(aragraph margin.

EDITOR 99

This setting of the Environment also causes the Editor to adjust the
margins on the portion of the paragraph following an insertion (but
not the paragraph portion preceding the insertion). The Editor
considers a paragraph to be any text bounded by any two 'paragraph
delimiters", where a paragraph delimiter is a blank line (created by
two RETURN characters), a line beginning with the C(ommand character
(set in the Environment), or the beginning or end of the file.

Note: the automatic re-margining following an insertion can sometimes
cause you much grief. If you are editing in or near a diagram, table,

or other carefully formatted portion of text, it is a good precaution
to temporarily set F(illing to False (just type SEFF<space>). This

will prevent an incidental insertion from reformatting your beautiful
diagram into a paragraph of meaningless text.

EXAMPLE:

With the Environment’s A(uto-indent option set to FALSE, the F(illing
option set to TRUE, the L(eft margin to ¢, and R(ight margin to 1@,
enter I(nsert mode and type the following:

WISH I WEREN'T A WASH-AND-WEAR WARRIOR

This should create the text format shown at the left, below:

WISH I Auto-returned when next word would exceed margin
WEREN'T A Auto-returned when next word would exceed margin
WASH-AND-WEAR Auto-returned at first possible break, even though
WARRIOR beyond margin.

Inserting with A(uto-indent and F(illing both TRUE

With this setting of the Environment, A(uto-indent controls the left

margin, ignoring the settings of the L(eft margin and P(aragraph
margin. F(illing inserts RETURN characters as before, to keep lines

from exceeding the set R(ight margin.

However, F(illing only operates to keep the CURRENT insertion from
exceeding the Right margin. Any text on the same line, but to the
right of the cursor, may extend beyond the Right margin or even beyond

the 80 characters visible on the Apple Pascal system’s display. The
existence of characters beyond position 79 is indicated by an

exclamation mark (!) displayed at the rightmost position on the
screen. To see the hidden characters, insert a RETURN character

anywhere in the visible portion of the line, or set A(uto-indent to
False and M(argin the paragraph.

Changing the indentation can be done as before, by typing space, left-
arrow, or CTRL-Q, but only if that is the FIRST character in a new
line (not likely, since F(illing will generally begin a line with the
last typed word). This setting of the Environment is not usually very
useful, as its effects can be better obtained in other ways.

100 APPLE PASCAL OPERATING SYSTEM

Inserting with A(uto-indent and F(illing both FALSE

With this setting of the Environment, the Editor ignores the margins

set in the Environment. All margins, indentations and RETURN
characters must be typed into the text by you. Characters may be

inserted at any position on the screen.

If you attempt to type beyond position 71, the computer may beep to
warn you. If you attempt to type beyond position 79, an exclamation
mark (!) is displayed at the rightmost position on the screen. This
character at the end of any line indicates that the line contains more
than the 8@ characters which can be displayed on the screen.
Additional characters typed into that line are not lost, but they are
not displayed. To see the hidden characters, you can Insert a RETURN
character anywhere in the visible portion of the line; or you can set

the Environment’s F(illing option to TRUE, the A(uto-indent option to
FALSE, and then issue the M(argin command.

D(elete

Delete mode is reached by typing D for D(elete while at the Edit
level. On entering Delete mode, the following prompt line appears:

>DELETE: < > <MOVING COMMANDS> [<ETX> TO DELETE, <ESC> TO ABORT]

In order to delete, the cursor must be in the correct position to

begin the deletion. If you are going to delete to the right (forward
through the text), place the cursor directly on the first character to
be deleted. If you are going to delete to the left (backward through

the text), place the cursor on the first character-position to the
right of the first character to be deleted.

On typing D and entering Delete mode, the Editor remembers where the
cursor is. That position is called the "anchor". As the cursor is
moved away from the anchor in any direction, using the normal cursor-
moves, all text between the cursor and the anchor disappears. When
the cursor is moved toward the anchor, the "erased" characters re-
appear. The repeat-factor may also be used to delete or undelete
several lines at once, by prefacing a <RET> or any other cursor move
with a repeat-factor while in Delete mode. The slash (/) repeat-
factor cannot be used.

To accept the deletion at any point, use <ETX>. To undo the entire

deletion at any time before using <ETX>, use <ESC>. Remember that
<ETX> means to type CTRL-C and <ESC> means to press the ESC key.

Unlike inserting ‘text, deleting text does NOT cause re-margining of
the portion of the paragraph following the deletion, even if the
Environment’s F(illing option is set to TRUE and A(uto-indent is set
to FALSE. Especially after a deletion that included a RETURN

character, the line containing the cursor may extend beyond the 8@-
character limit of the Apple Pascal system’s display. The invisible

EDITOR 101

portion of the line is indicated by an exclamation mark (!) in the
last visible character-position of the line. To see the rest of the
line, insert a RETURN character anywhere in the visible portion of the
line, or use the M(argin command to reformat the entire paragraph.

All the text between the cursor and the anchor position is stored in
the Copy buffer, ready for use by the C(opy command, not only after

you accept the deletion with CTRL-C , but also after you reject the

deletion by pressing the ESC key. This last fact is useful when you
want to duplicate some text in another location, or when you are

moving some text to another location but wish to keep a backup copy of
the text until the move is successfully completed.

If you attempt to delete too much text at one time (the maximum amount
varies somewhat, depending on how large your file is at the moment.),
the Copy buffer may be unable to hold all the deleted text. In that

case, when you press CTRL-C to accept the deletion this message appears:

THERE IS NO ROOM TO COPY THE DELETION. DO YOU WISH TO DELETE ANYWAY? (Y/N)

If you type Y for "Yes", the text between the cursor and the anchor
position is deleted but that text is not placed in the Copy buffer.
If you type N for "No", the deletion is not carried out, and the text
is not placed in the Copy buffer. After a response of either Y or N
the Copy buffer is left containing the same text it held before the

D(elete command was initiated. If you reject a deletion that is too
large for the Copy buffer, by pressing the ESC key, no message is

given at that time. However, if you then attempt to C(opy from the
Copy buffer this message appears:

ERROR: NO ROOM PLEASE PRESS <SPACEBAR> TO CONTINUE.

EXAMPLE:

Suppose you are editing the following text:

PROGRAM STRING2;
BEGIN
WRITE(“TOO WISE “);
WRITELN(‘TO BE.”")
END.

1) Move the cursor onto the E in END.

2) Type < (This changes the set direction to backward)
3) Type D to enter Delete mode.

4) Press the RETURN key twice. After the first RETURN the line
WRITELN(’TO BE.”) disappears. After the second RETURN, the

line WRITE(’TOO WISE’); disappears.
5) Now press CIRL-C . The program after deletion appears as shown:

PROGRAM STRING2;

BEGIN
END.

102 APPLE PASCAL OPERATING SYSTEM

The two deleted lines have been stored in the Copy buffer and the

cursor has returned to the anchor position. Now use the C(opy command
to copy the two deleted lines at any place to which the cursor is

moved.

Note: after pressing CTRL-C , if you immediately C(opy the deletion
withOUT moving the cursor, the deleted material is just replaced.
This gives you one more chance to recover from a mistaken deletion.

Z(ap

The Zap command is executed by typing Z for Z(ap while at the Edit
level. This command deletes all text between the current cursor
position and the start of what was previously found, replaced or
inserted.

The text position of the first character of the previous Find,

Replace, or Insert is called the "equals mark". Typing the = key
will place the cursor exactly at the equals mark, showing you where a
Zap would end. You can then move the cursor (but do not use F(ind!)

to the beginning of the material you wish to Zap.

This command is designed to be used immediately after one of the Find,
Replace or Insert commands. If you Insert new material to the right
of the old text that you want deleted, and then move the cursor back
to the beginning of the old text and type Z, you will leave the
Inserted material while deleting the old text.

If more than 8§ characters are being Zapped, the Editor will ask for
verification:

WARNING! YOU ARE ABOUT TO ZAP MORE THAN 8¢ CHARS, DO YOU WISH TO ZAP? (Y/N)

Repeat-factors and Zap: If a Find or a Replace is made with a repeat-

factor, only the last string found or replaced will be deleted by
Zap. All the other strings will be left as found or replaced.

All the text that is deleted by using the Zap command is placed in the

Copy buffer, where it is available for use with the Copy mode (until
the next insertion or deletion).

If you attempt to use Zap to delete too much text at one time (the
maximum amount varies somewhat, depending on how large your file is
at the moment), the Copy buffer may be unable to hold all the

deleted text. In that case, when you type Z to Zap the deletion,
first this message appears:
WARNING! YOU ARE ABOUT TO ZAP MORE THAN 80 CHARS, DO YOU WISH TO ZAP? (Y/N)

and then, when you type Y for "Yes", this message appears:

THERE IS NO ROOM TO COPY THE DELETION. DO YOU WISH TO DELETE ANYWAY? (Y/N)

EDTOR 103

If you type Y for "Yes", the text between the cursor and the "equals"
position is deleted but that text is not placed in the Copy buffer.

If you type N for "No", the deletion is not carried out, and the text
is not placed in the Copy buffer. After a response of either Y or N ,
the Copy buffer is left containing the same text it held before the
D(elete command was initiated.

Clopy

You get into Copy mode by typing C for C(opy at any time the EDIT
prompt line is showing. On entering Copy mode, the following prompt
line is displayed:

>COPY: B(UFFER F(ROM FILE <ESC>

Copying F(rom a Diskette File

To Copy text that is stored in another diskette file, so that it is
inserted at the current cursor position in the file you are Editing
(that is, between the character on which the cursor sits and the first
character to the cursor’s left), type C for C(opy and then type F for
F(rom file and another prompt line appears:

>COPY: FROM WHAT FILE [MARKER,MARKER]?

Any existing diskette file may now be specified. You may type the
filename’s .TEXT suffix or not, as you wish. The suffix .TEXT is
automatically supplied if you do not type it into your file
specification. To suppress this feature (when C(opying from a file whose
name does not end in .TEXT), type a period following the complete file
specification. In order to Copy a portion of a file, two markers must
have been set in the text of that file to bracket the desired text. The
markers must have been set in the file at an earlier time, when that

file was the file being Edited (see S(et M(arker , under Miscellaneous
Commands) .

If your response to the prompt line above does not include any marker
names (in square brackets), the entire specified file is inserted into
your workfile. If the file specification is followed by two marker
names, enclosed in square brackets and separated by a comma, the
portion of the specified file’s text that is bounded by the two
markers is inserted into your workfile. If [,marker] is used, the
file is copied from the beginning to the marker. If [marker,] is
used, the file is copied from the marker to the end of the file. TUse

of the Copy command does not change the contents of the file being
copied from.

104 APPLE PASCAL OPERATING SYSTEM

If your response to the prompt line above does not include any marker
names (in square brackets), the entire specified file is inserted into
your workfile. If the file specification is followed by two marker
names, enclosed in square brackets and separated by a comma, the
portion of the specified file’s text that is bounded by the two

markers is inserted into your workfile. If [,marker] is used, the
file is copied from the beginning to the marker. If [marker,] is

used, the file is copied from the marker to the end of the file. Use of
the Copy command does not change the contents of the file copied from.

On the completion of the Copy command, after text has been copied from
the specified diskette file, the cursor is placed on the first
character of the text which was copied and this message appears:

BE SURE ORIGINAL SYSTEM.EDITOR DISK IS IN SAME DRIVE: {RETURN TO CONTINUE}

This message is for one-drive users who have copied from a file on a
diskette other than their boot diskette. When the boot diskette is
back in the boot drive, press the RETURN to continue.

If your present file can not contain all the additional text that you
are attempting to Copy into it (maximum size of a file is about 18400

bytes, or 38 diskette blocks), the Editor copies in as much of the
additional text as it can. Then it gives this message:

ERROR: BUFFER OVERFLOW. PLEASE PRESS <SPACEBAR> TO CONTINUE.

When you press the spacebar, the Copy is complete; your file now contains
as much of the additional text as the Editor could fit into your file.

EXAMPLE:

Suppose the diskette named MYDISK: contains a file named OLDFILE.TEXT,
which has two markers placed in its text: ALPHA and BETA . Further
suppose that you are now in the Editor, editing a new file, and you
wish to insert at the current cursor position the text of
OLDFILE.TEXT bounded by markers ALPHA and BETA .

In response to the EDITOR prompt line, you would first type a C to
enter Copy mode, and then an F to select copying From-a-file. This
prompt line would then appear:

>COPY: FROM WHAT FILE[MARKER,MARKER] ?
To cause the planned insertion, type
MYDISK:OLDFILE [ALPHA,BETA]

Copying from the Copy B(uffer

Each time text is inserted or deleted, that text is also stored in the
"Copy buffer", sometimes called the "insert-delete buffer". To use
the text in the Copy buffer, type C to enter C(opy mode and then type
B for B(uffer. The Editor immediately copies the contents of the Copy
buffer into the file at the current location of the cursor (that is,

EDITOR 105

between the character on which the cursor sits and the first character

to the cursor’s left). Use of the C(opy command does not change the
contents of the Copy buffer.

On the completion of the C(opy command, after text has been copied

from the Copy buffer, the cursor is placed on the first character of
the text which was copied.

Unlike inserting text, Copying text does NOT cause re-margining of

the portion of the paragraph following the Copy, even if the
Environment ‘s F(illing option is set to TRUE and A(uto-indent is set
to FALSE. After Copying, some lines may extend beyond the 8@-
character limit of the Apple Pascal system’s display. The invisible
portion of the line is indicated by an exclamation mark (!) in the
last visible character-position of the line. To see the rest of the
line, insert a RETURN character anywhere in the visible portion of the
line, or use the M(argin command to reformat the entire paragraph.

The Copy command can be used after an Insertion has been made, to
duplicate the section of text just inserted, as many times as desired.
Even more common is to use the Copy command to move text from one

location in the file to another. Just D(elete the text from its
present location, then move the cursor and C(opy the deleted text into

its new location.

The contents of the Copy buffer are affected by the following
commands :

1) D(elete: When you accept a deletion (with CTRL-C), the Copy buffer

is loaded with the deleted text. When you reject a deletion (by
pressing the ESC key), the Copy buffer is loaded anyway, with the text
that would have been deleted had you accepted the deletion.

2) I(nsert: When you accept an insertion (with CTRL-C), the Copy
buffer is loaded with the inserted text. When you reject an insertion
(by pressing the ESC key), the Copy buffer is empty.

3) Z(ap: When you delete text using the Zap command, the Copy buffer
is loaded with the deleted text.

The Copy buffer is of limited size (the actual size depends somewhat
on how much of your computer’s memory is occupied by your workfile).
Whenever the proposed deletion (using either the Z(ap or the D(elete
commnd) is greater than the amount of space available in the Copy
buffer, the Editor will issue this warning:

THERE IS NO ROOM TO COPY THE DELETION. DO YOU WISH TO DELETE ANYWAY? (Y/N)

If you respond by typing Y for "Yes'", the deletion is carried out in
the normal way, but the deleted text is not stored in the Copy
buffer. If you respond by typing N for "No'", the deletion is
rejected, but the rejected deletion is not stored in the Copy buffer.
After either response, the contents of the Copy buffer remain what
they were before D(elete or Z(ap was initiated.

106 APPLE PASCAL OPERATING SYSTEM

If you Delete too much text and then reject the deletion by pressing
the ESC key, you are given no message at that time. However, a

subsequent attempt to Copy from the Copy buffer causes this rather
enigmatic message:

ERROR: NO ROOM PLEASE PRESS <SPACEBAR> TO CONTINUE.

and the Copy is not carried out.

If your file is already almost full (maximum file size is about 1990¢
bytes, or 42 diskette blocks), you may receive one of these messages
when you attempt to C(opy from the Copy buffer:

ERROR: INVALID COPY. PLEASE PRESS <SPACEBAR> TO CONTINUE.
or
ERROR: NO ROOM PLEASE PRESS <SPACEBAR> TO CONTINUE.

In either case, the Copy is not carried out. This condition indicates
that it is time to start a new file or to split your current file into
two parts.

X(change

The eXchange mode is reached by typing X while at the Edit level. On
entering eXchange mode the following prompt line appears:

>EXCHANGE: TEXT [<BS> A CHAR] [<ESC> ESCAPES; <ETX> ACCEPTS]

The eXchange mode is used to replace the character on which the cursor
is sitting. As you type in eXchange mode, the cursor moves to the

right along the line of text, replacing one character in the line each
time you press a key. The left-—arrow key (<BS>) can be used to move

the cursor back one character, causing the character originally in

that position (before the eXchange) to reappear. The set direction
does not affect eXchange mode.

As with many other commands in the Editor, a text eXchange is made
final by pressing CTRL-C (<ETX>). Pressing the ESC key (<ESC>)
leaves eXchange mode without making any of the changes indicated since
entering the mode.

Note: eXchange mode does not allow you to type beyond the end of the
line, nor does it allow you replace a text character with a RETURN
character.

EXAMPLE:

Suppose you wish to alter this line of text:

WRITE(“TOO WISE “);

EDITOR 107

After placing the cursor on the W in WISE, type an X to enter eXchange
mode. Now type the letter S and notice how it replaces the letter W .
Press the left-arrow key to see the W reappear. Now type S again,

and then M , leaving the line of text as follows:

WRITE(”TOO SMSE “);

Typing CTRL-C will make this change final, or pressing the ESC key will
cause the original line to be retained.

R(eplace

Replace mode is reached by typing R for R(eplace while at the Edit
level. On entering Replace mode, one of the following two prompt
lines appears, depending on the setting of T(OKEN DEFault in the
Environment (see S(et E(nvironment in Miscellaneous Commands):

>REPLACE[1]: L(IT V(FY <TARG> <SUB> =>
if the Environment’s T(OKEN DEFault is set to TRUE, or
>REPLACE[1]: T(OK V(FY <TARG> <SUB> =>

if the Environment’s T (OKEN DEFault is set to FALSE.

The Replace command searches through a file in the set direction to
find repeat-factor occurrences of the specified TARGet string of
characters, and replaces each of those occurrences (after
verification, if that option is chosen) with the specified SUBstitute
string of characters. When finished, it places the cursor at the end
of the last string found and/or substituted.

Set direction

The R(eplace command searches for repeat-factor occurrences of the
target string beginning at the present cursor position and scanning
through the text in the set direction (indicated by the arrow at the
beginning of the prompt line). An occurrence of the target string
will be found only if it appears in that portion of the text which
lies between the cursor and the end of the file toward which the
search is progressing. See the section on the set direction (in this
chapter, under General Information) in order to change the set
direction arrow. If the end of the file is reached before the repeat-
factor-th replacement can be carried out, this message appears:

ERROR: PATTERN NOT IN THE FILE PLEASE PRESS <SPACEBAR> TO CONTINUE.
Remember, however, that the search does not "wrap around". That portion

of the file between the cursor and the end of the file in the
direction OPPOSITE the set direction is not searched.

108 APPLE PASCAL OPERATING SYSTEM

Repeat-factor

The repeat-factor is an integer from ¢ to 9999 which may be typed just
before typing the R for R(eplace. It is shown on the prompt line in
square brackets: [l] , for example. If a repeat- factor of n is
specified, the next n occurrences of the target string in the set
direction are replaced. If no repeat-factor is specified, a repeat-
factor of one is used. If a repeat-factor of / is used, all
occurrences of the target string in the set direction are replaced.

L(iteral or T(oken search

The target string is treated somewhat differently, depending on
whether Literal search or Token search is selected. The default
setting of the search mode is set in the Environment. The REPLACE
prompt line indicates only the non-default choice: L(IT or T(OK . If

you do not specify a search mode, the default search mode (the one
which is NOT mentioned on the prompt line) is used. To use Token
search when the default is Literal search (prompt line says T(OK),
type T after the prompt line and before the target string. To use
Literal search when the default is Token search (prompt line says L(IT
), type L before typing the target string. Note: nothing appears to
happen when you type L or T ; the letter just appears where you are
about to type the target string. See S(et E(nvironment in
Miscellaneous Commands for more details about Literal and Token

search modes.

V(erify option

The Verify option (shown as V(FY on the REPLACE prompt line) permits
examination of each target string as it is found, before the
replacement is carried out. You can then decide whether this
occurrence of the target string is to be replaced or not. To select
the Verify option in Replace mode, type V before typing the target
string. Nothing will appear to happen when you type V, but the Verify
option will be selected anyway. The following prompt line appears
whenever Replace mode has found an occurrence of the target string in
the file and Verify has been requested:

>REPLACE: <ESC> ABORTS, ‘R’ REPLACES, “ “ DOESN’T

Typing an R at this point will cause the specified replacement to be
carried out, while pressing the spacebar will cause the Replace mode
to search for the next occurrence of the target string, provided the
specified repeat-factor (or the end of the file) has not been reached.
The repeat-factor specifies the number of times an occurrence of the
target string is to be found, not the number of times you actually
type R to cause its replacement. Use / as the repeat-factor in order
to examine every occurrence of the target string in the set direction.

EDTOR 109

Strings

The Editor has two string storage variables. The first string
variable, called <TARGET> or <TARG> by the prompt line, contains the
"target" string, and is used both by the F(ind command and by the
R(eplace command. The target string is the sequence of characters
which will be searched for by the Find command, or searched for and
replaced by the Replace command. The second string, used only by the
Replace command, is called <SUB> by the REPLACE prompt line and is the
"substitute" string. In the Replace command only, the substitute
string is the sequence of characters which will replace the target
string when the target string is found.

String delimiters

To allow the target and substitute strings to contain any characters
(including RETURN characters), each string must be typed using special
rules. In particular, each string must be set off by characters
called "delimiters". Both delimiters of a string must be the same
character. One delimiter must precede the first character of the
string, and the same delimiter must follow the last character of the
string.

The Editor allows almost any normal printing character which is not a
letter or a number to be a delimiter. This lets you choose the
delimiter. The most common choice is the slash (/) because it is a
lower-case character that is not commonly found in the text, and it
easy to type.

Once you have typed the initial delimiter character for either the

target or the substitute string, you cannot backspace (using the left-
arrow key) to erase that character or any of the preceding characters

in your response. If you forget to precede either the target string

or the substitute string by a correct delimiter character, you will be told.

ERROR: INVALID DELIMITER. PLEASE PRESS <SPACEBAR> TO CONTINUE.

You will get the same message if you try to backspace (by pressing the
left-arrow key) immediately after typing the target string’s final
delimiter. Just try the whole command again, and this time use the
correct delimiters.

Note: many CTRL characters have other system uses, and should not be

used as string delimiters. These include CTRL-A (screen page-flip),
CTRL-F (stop output), CTRL-H (left-arrow key), CTRL-I (tab), CTRL-M
(RETURN), CTRL-S (stop program), CTRL-Z (cursor auto-follow), and
CTRL-@ (hangs system).

110 APPLE PASCAL OPERATING SYSTEM

ESC option

At any time during your response to the REPLACE prompt, you can
abandon this command and return to the Edit level by pressing the ESC
key.

The Same-string option

Typing S in the place of the delimited target string tells the Replace
command to use the same target string that was last specified. The
target string may have been specified either by the Find command or by
a previous use of the Replace command. Similarly, typing S in the
place of the delimited substitute string tells the Replace command to
use the same substitute string that was last specified by a previous
use of the Replace command. For example, in Replace mode, typing

S/<any-string>/

causes the Replace mode to use the previous target string (and a new
substitute string), while typing

/<any-string>/$

causes the previous substitute string to be used (and a new target
string). From the Editor, typing the command

RVSS

says "Do it again": it causes the next occurrence of the previously

specified target string to be replaced (after verification) with the
previously specified substitute string.

Note: when the set direction specifies searching through the text in
the reverse direction (toward the beginning of the file), RVSS may
appear to have no effect if you chose NOT to replace the last found
occurrence of the target string. This is because the Replace command
places the cursor just AFTER the found occurrence of the target
string. Unless the cursor is moved beyond the first character of the
currently found occurrence of the target string, or unless that
occurrence is changed to a different string, RVSS will just find the
same occurrence of the target string again and again.

Note: The Environment (see S(et E(nvironment, in Miscellaneous

Commands) shows you the current <TARGET> and <SUBST> strings which
will be invoked by typing S as a string response.

EDTOR M

EXAMPLE 1:

Suppose you wish to replace the next three occurrences of the target
string APPLE with the substitute string BANANA :

From Edit mode, you would type
3R

to indicate a repeat-factor of 3 and then to select the Replace mode.
In response to the REPLACE prompt line:

>REPLACE [3]: T(OK V(FY <TARG> <SUB> =>
you could type
/APPLE/)BANANA)

In this example, first the character / is used as the beginning and
ending delimiter for the target string, and then the character) is

used as the beginning and ending delimiter for the substitute stringe.
In the example, two different delimiters were used for pedagogical
purposes. In practice you would be more likely to use

/APPLE//BANANA/

If you now wish to Replace 5 more occurrences of the target string
APPLE , but this time with the substitute string PAPAYA , just type
(from Edit mode)

5RS /PAPAYA/
After a brief flash of this prompt line
>REPLACE[5]: T(OK V(FY <TARG> <SUB> =>S/PAPAYA/
“the requested replacements will be carried out.
EXAMPLE 2:
From Edit mode, if you type
RL/QX//YZ/
this prompt line should appear:

>REPLACE([1]: L)IT V)FY <TARG> <SUB> =>L/QX//YZ/

112 APPLE PASCAL OPERATING SYSTEM

This command will change the program line

VAR SIZEQX:INTEGER;
to

VAR SIZEYZ:INTEGER;

You must select the non-default Literal search mode (by typing L
before typing the target string) because the string QX is not a token
but is part of the token SIZEQX.

FORMATTING COMMANDS

A(djust

Adjust mode is reached by typing A for A(djust while at the Edit
level. On entering Adjust mode, the following prompt line appears:

>ADJUST: L(JUST R(JUST C(ENTER <LEFT,RIGHT,UP,DOWN-ARROWS> [<ETX> TO LEAVE]

The Adjust mode is designed to make it easy to adjust the indentation
of a line or a whole group of lines. Cursor moves (using the right-
arrow and the left-arrow keys) can be used to push the line right and
left, or you can adjust the line to the L(eft margin, the R(ight
margin, or the C(enter. Moving the cursor up or down makes the same
adjustment to lines above or below. Use of a repeat-factor is valid
with all cursor moves.

Once you are in Adjust mode, each time the right-arrow key is typed,
the whole line moves one space to the right. The line can be moved
beyond the Right margin set in the Environment. Characters moved
beyond the 8f-th character position are not displayed, but their
existence is indicated by an exclamation mark (!) in the 8@-th
character position of the line.

Each time the left-arrow key is typed, the whole line moves one

position to the left. The line can be moved beyond the Left margin
set in the Environment, but the leftmost character cannot be moved
beyond the left edge of the screen display (character position zero).

When the line is adjusted to the desired indentation press <ETX>
(that’s CTRL-C , of course).

Note: <ESC> cannot be used to cancel an Adjustment. You MUST accept
the adjustment, by pressing CTRL-C .

EDITOR M3

In order to adjust a whole sequence of lines, first adjust the top or
the bottom line, then (BEFORE typing CTRL-C) use CTRL-0 or CTRL-L
commands and the line above (or below) will automatically be adjusted
by the same amount when the cursor jumps to that line. Finally, when
the entire sequence has been adjusted, type CTRL-C.

Repeat-factors, including / , are valid when used before any of the
cursor moves while in Adjust mode.

Adjust mode can also be used to center text on the page and to left-
justify or right-justify text (force all the lines to make a smooth
left margin, like this page, or a smooth right margin). Typing L for
L(JUST while in Adjust mode causes the line containing the cursor to
be left-justified by moving the leftmost non-space character to the
Left margin set in the Environment. Similarly, typing R for R(JUST
right-justifies the line by moving the rightmost text character to the
set Right margin. Typing C for C(ENTER causes the line to be centered
between the set Left and Right margins. Typing CTRL-0 or CTRL-L
(before CTRL-C is typed) will cause the line above (or below) to be

adjusted to the same specification (left-justified, right-justified or
centered) as the previously adjusted line.

M(argin

The Margin command is executed by typing M for M(argin while at the
Edit level. There is no indication of this command in the EDIT prompt
line. Within the paragraph containing the cursor, the Margin command

adjusts the text to compress it as much as possible without violating
the three margins set in the Environment.

Margin is an Environment dependent command; that is, it may only be
executed when F(ILLING is set to TRUE and A(UTO INDENT is set to FALSE
in the Environment. If you attempt to Margin a paragraph when

F(illing and A(uto indent are not set correctly in the Environment,
this message appears:

ERROR: INAPPROPRIATE ENVIRONMENT PLEASE PRESS <SPACEBAR> TO CONTINUE.

You must set these two options correctly in the Environment before the
Margin command can be executed. There are also three parameters (all
are Set in the Environment) used by this command: R(IGHT MARGIN, L(EFT
MARGIN and P(ARAgraph MARGIN. See S(et E(nvironment under

Miscellaneous Commands for how to set F(illing, A(uto-indent, and the
margin values.

The Margin command affects only the paragraph which contains the
cursor. A paragraph is defined to be any text bounded above

and below by any two paragraph delimiters, where a paragraph delimiter

may be a blank line (created by two consecutive RETURN characters),
the beginning of the file, the end of the file, or a line which starts

114 APPLE PASCAL OPERATING SYSTEM

with the Command character that is currently set in the Environment.

Unless you change it (see S(et E(nvironment), the COMMAND CHaracter is
set by default to the carat (=).

To Margin a paragraph, move the cursor to anywhere in that paragraph
and type M . When doing an exceptionally long paragraph, it may take
several seconds before the routine is ready to redisplay the screen.
When breaking lines to avoid exceeding the right margin, the Margin
command recognizes all spaces as possible points to break the

line. All other characters in sequence are considered words, and will
not be broken. The Margin command does not recognize hyphens as
possible line break points, nor does it know how to correctly
introduce hyphens into words that do not already contain them.

Certain characters or character combinations, when followed by one or
more spaces, will be followed by exactly two spaces after a Margin
command. These characters include the following: period, question
mark, colon, exclamation point, or any of those characters immediately
followed by a close-parenthesis or double quote.

EXAMPLE:

The paragraph below has been Margined with these Environment parameters:

L(eft margin)
R(ight margin 72
P(aragraph margin 8

When you operate a skateboard in excess of 35@ miles per hour,
certain problems are encountered. First of all, the number of traffic
citations becomes excessive, unless your skateboard is equipped with
the proper racing stripes. Secondly, goggles and knee protectors
often blow away and skateboards have been known to become airborne.
Lastly, you may have to endure the ire of Porshe and Ferrari drivers,
since they become depressed, angered, and sometimes say uncomplimentary
things when passed by a person on a skateboard.

EDITOR 115

Next, the same paragraph is shown after being Margined with these
parameters set in the Environment:

L(eft margin 19
R(ight margin 64
P(aragraph margin 1]

When you operate a skateboard in excess of 35@ miles per hour,
certain problems are encountered. First of all, the
number of traffic citations becomes excessive, unless
your skateboard is equipped with the proper racing
stripes. Secondly, goggles and knee protectors often
blow away and skateboards have been known to become
airborne. Lastly, you may have to endure the ire of
Porshe and Ferrari drivers, since they become

depressed, angered, and sometimes say uncomplimentary
things when passed by a person on a skateboard.

MISCELLANEOUS COMMANDS

S(et

Set mode is reached by typing S for S(et while at the Edit level.
There is no indication of the Set mode option on the EDIT prompt
line. On entering the Set mode, the following prompt line appears:

>SET: E(NVIRONMENT M(ARKER <ESC>

S(et M(arker:

When you are editing a large file, it is particularly convenient to be
able to jump directly to certain places in the file by using markers
that have been set in the desired places. Once set, it is possible

to jump to these markers at any time, by using the M(arker option in
the J(ump mode (see Moving Commands).

The C(opy F(rom File command can also make use of markers that have
been placed in the text of a file. When you are editing one file, the
marked portion of a second file that is stored on diskette may be
copied into the file you are editing (see Text Changing Commands).

This is how you place a marker in the text of a file that you are

editing. While still in Edit mode, move the cursor to the spot in the
text where you want the marker to be placed. When the cursor is in

M6 APPLE PASCAL OPERATING SYSTEM

the desired spot, type S to enter S(et mode, and then type M for
M(arker. The following prompt line appears:

SET WHAT MARKER?

This is asking you to type the name of the marker which will be placed
at the current cursor position. The marker name may be up to eight
characters (if you type more, they will be truncated to the first
eight), terminated by pressing the RETURN key. Almost any character
except a carriage return may be used in a marker name, but all lower-
case letters are converted to upper-case letters. Note that the C(opy
F(rom file command uses a comma to separate the two markers which
specify the text to be copied. For use with that command, the first
marker name must not contain a comma. If a marker with the specified
name has already been placed in the text at an earlier time, the old
marker is moved to the current cursor position without comment, and
the old position is lost.

Only ten markers are allowed in a file at any one time. If you
attempt to place an eleventh marker, the following message appears:

MARKER OVFLW. WHICH ONE TO REPLACE?
) namel
1) name2

9) namel@

You must eliminate one of your existing markers before you can place
the new one. Choose a number from ¢ through 9, type that number and
its place in the list will now be available for your new marker name.
You can use this method to rename or re-place an existing marker, but
you can never simply remove a marker from your file, even if you
delete all the text that contained the marker.

A marker specifies an absolute position in the file. If an insertion,

copy or deletion is made between the beginning of the file and the
marker position, the marker will move along with the associated text
although the movement is only approximate.

EDITOR M7

S(et E(nvironment

The Editor lets you set various aspects of the editing "environment"
to suit the task at hand. From the Edit level, type S to enter the

S(et mode, and then type E for E(nvironment. The screen display is

replaced with a prompt similar to the one shown below:

>ENVIRONMENT: [OPTIONS] <ETX> OR <SP> TO LEAVE

A(UTO INDENT TRUE

F(ILLING FALSE

L(EFT MARGIN @

R(IGHT MARGIN 79

P(ARA MARGIN 5

C(OMMAND CH -

T(OKEN DEF TRUE

7436 BYTES USED, 12(2¢ AVAILABLE.

PATTERNS :
<TARCET>= “APPLE”, <SUBST>= ‘BANANA’

MARKERS :
START PART3 SUMMARY
INTRO MAINPARA BIBLIOG
ACKNOWL PART 5 INDEX

DATE CREATED: 4-13-79 LAST USED: 7-28-79

By typing the appropriate first letter, any or all of the options
listed in the upper portion of the display may be changed. The
settings shown for many of the options are the default settings for
the Editor on most screens. Implementations for some external
terminals may use different defaults.

The portion of the display showing the PATTERNS: <TARGET> and <SUBST>
will not appear unless you have used the F(ind or R(eplace commands
since entering the Editor this time. The portion of the display
showing the MARKERS: currently in the file will not appear unless you

have at some time used the S(et M(arker command to place a marker in
the text.

The information stored in the Environment (with the exception of the
<TARGET> and <SUBST> strings) is saved each time you save the file on

diskette, so the system can "remember" that environment each time you
work on that file again.

18 APPLE PASCAL OPERATING SYSTEM

THE ENVIRONMENT OPTIONS
A(uto indent

Auto-indent affects only the Editor commands I(nsert (under Text

Changing Commands) and M(argin (under Formatting Commands). See the
discussions of those commands for more details and examples.

The A(UTO INDENT option is set to TRUE (each new line is automatically
started at the same indentation as the first non-space character of
the previous line) by typing A T .

The A(UTO INDENT option is set to FALSE (new lines begin at the
screen’s left edge or at the set Left margin and Paragraph margin) by
typing A F « Unless Auto-indent is False (and Filling is True), the
Margin command will not operate and the Insert command will not cause
re-marginning of the portion of a paragraph following an insertion.

Auto-indent should generally be True for writing and editing Pascal
programs, and False for writing and editing natural language text.

F(illing

Filling affects the Editor’s I(nsert Command (under Text Changing

Commands) and allows the M(argin command (under Formatting Commands)
to function. See the discussions of those commands for more details
and examples.

The F(ILLING option is set to TRUE (lines are automatically broken
between words -- at spaces and hyphens =- to avoid exceeding the set
Right margin) by typing F T . Unless Filling is True (and Auto-
indent is False), the Margin command will not operate and the Insert
command will not cause re-marginning of the portion of a paragraph
following an insertion.

The F(ILLING option is set to FALSE (the set margins are ignored;
you must end each line yourself) by typing F F .

Filling should generally be False for writing or editing Pascal
programs, and True for writing or editing natural language text.
However, if you are editing a table, diagram, or other carefully
formatted portion of text, it is a very good safety precaution to
set Filling to False (from the Edit level, just type SEFF<space>).

This will save you the frustration of having your text completely
re-formatted following an insertion.

EDTOR M9

L(eft margin
R(ight margin
P(aragraph margin

When Filling is True (and Auto-indent is False), the margins set in
the Environment are the margins which are used by the I(nsert command
(under Text Changing Commands) and the M(argin command (under
Formatting Commands). These margins also affect the Center,

Left, and Right justifying commands in the Adjust mode (under
Formatting Commands). See the discussions of those commands for more
details and examples.

To change the value for the L(EFT MARGIN option, type L followed by
an unsigned integer, and then press the spacebar. The unsigned
integer may also be terminated by pressing the RETURN key. The value
that you type replaces the old value for the Left margin in the prompt
display shown at the beginning of this section.

To change the value for the R(IGHT MARGIN option, type R followed by
an unsigned integer, and then press the spacebar. Similarly, you can

change the value of the P(ARA MARGIN option by typing P followed by

an unsigned integer, and then press the spacebar.

All unsigned integers with four or fewer digits are valid margin
values. If you attempt to assign a margin value of more than four
digits, the value will be truncated to the first four digits typed.
To create normal text displays whose characters are all visible on
the screen, you should use margin values from ¢ through 79, and the
Left and Paragraph margin values should be less than the value of the
Right margin. To create text that is confined to the left "page" of
the 4@-character Apple screen, use margin values from ¢ through 39.

C(ommand character

The Command character affects the M(argin command (under Formatting
Commands) and re-marginning in the Insert mode (under Text Changing
Commands). See the discussions of those commands for more details.

To change the setting of the C(OMMAND CH option, type C followed by
almost any character except the RETURN character or ESCape. For
example, typing C * will change the set Command character to * .
This change will be reflected in the Environment prompt.

If the Command Character appears as the first non-blank character in a
line of text, then that line is protected from the Margin command, and
from re-marginning following an Insertion. That line is also treated
as a paragraph delimiter for marginning purposes. The normal Command
character is the carat or circumflex accent (=). Unless you have
some special use for the carat character in your text, you should
generally leave it as the set Command character.

120 APPLE PASCAL OPERATING SYSTEM

T(oken default

This option affects the search mode used by the commands F(ind and
R(eplace (under Text Changing Commands). See the discussions of
those commands for more details and examples.

The T(OKEN DEF option is set to TRUE (the default search mode is Token
search) by typing T T , and to FALSE (the default search mode is
Literal search) by typing T F .

In Literal search mode, the Editor will look for ANY occurrence of

a string of characters that exactly matches the <TARGET> string. In
Token search mode, the Editor will look for ISOLATED occurrences of
the <TARGET> string. The Editor considers a string isolated if it is
surrounded by any combination of delimiters, where a delimiter is any
character that is not a number or letter.

For example, in the sentence '"Put the book in the bookcase.'", using
the <TARGET> string "book", Literal search mode will find two
occurrences of "book" while Token search mode will find only one, the
word "book'" isolated by the delimiters <space> <space>.

In Token search mode you can find an occurrence of the <TARGET> string,
even if the occurrence has more spaces or fewer spaces (including

zero) corresponding to each space in the specified <TARGET> string. For
example, suppose you are searching the following text, which contains

four slightly different occurrences of the words "APPLE PIE":

I°LL HAVE SOME A PPLEPIE, SOME APPLE PIE,
SOME APPLEPIE, AND THEN SOME AP PLE PIE, TOO.

If you use the <TARGET> string "APPLEPIE" , a Token search will find

only the third occurrence. With the <TARGET> string "APPLE PIE" , a
Token search will find both the second occurrence (which has more

spaces, but at the right place in the string) and the third occurrence

(which has fewer spaces, and none in the wrong place). With the
<TARGET> string "A P P L E P I E" , a Token search will find all four
occurrences.

However, only a Literal search would find an occurrence of "APPLE PIE"
that was buried in the word "CRABAPPLE PIE". That’s because the "B"
would not constitute a proper isolating delimiter.

When editing natural language text, it is a good idea to use Literal
search mode (set T(OKEN DEFault to FALSE). When editing programs, it
is usually more useful to use Token search mode (leave T(OKEN DEF set
to TRUE).

EDITOR 121

V(erify

The Verify command is executed by typing V for V(erify while at the
Edit level. There is no indication of the V(erify command on the EDIT
prompt line. The status of the Editor is verified by redisplaying the
screen. The Editor attempts to adjust the window so that the cursor
is at the center of the screen. This command can be psychologically
helpful. Type it whenever you are unsure that the screen really
corresponds to what is in your file, especially when an Insertion
leaves an extra word or two dangling beyond the right end of a line.
After typing V the screen is pretty much guaranteed to accurately
reflect what is really in your file.

Q(uit

Quit mode is reached by typing Q for Q(uit while at the Edit level.
On entering Quit mode, the screen display is replaced by this
prompt message:

>QUIT:
U(PDATE THE WORKFILE AND LEAVE
E(XIT WITHOUT UPDATING
R(ETURN TO THE EDITOR WITHOUT UPDATING
W(RITE TO A FILE NAME AND RETURN
S(AVE WITH SAME NAME AND RETURN

One of the four displayed options (described below in more detail)
must be selected by typing U for U(pdate, E for E(xit, R for
R(eturn, W for W(rite, or S for S(ave .

U(pdate

This tells the Editor to erase all previous versions of the boot
diskette’s workfile (SYSTEM.WRK.CODE as well as SYSTEM-WRK TEXT).
Then it saves on the boot diskette, under the filename

SYSTEM WRK TEXT, a backup copy of the file currently in memory. An
U(pdate should be done at least every 15 minutes, in order to prevent
accidental loss of your efforts. From the Editor, every so of ten,
just type Q U E .« In a few seconds, the boot diskette’s file
SYSTEM.WRK-TEXT will contain the latest version of your workfile, and
you will again be in the Editor, ready to continue working on your
backed-up workfile.

E(xit

This causes the system to leave the Editor without saving on diskette
the file that is currently being worked on in memory. The boot

122 APPLE PASCAL OPERATING SYSTEM

diskette’s backup copy of the workfile, SYSTEM.WRK.TEXT, is not
updated to contain the latest version of the workfile. This means
that any modifications made since entering the Editor are not recorded
in SYSTEM.WRK.TEXT or in any other place. All editing which was done
during the session is irretrievably lost. After selecting this
option, you are placed at the Command level.

R(eturn

This option lets you return directly to the Editor without updating.
The cursor is returned to the exact place in the file it occupied when
Q was typed. Usually this command is used after unintentionally typing Q .

W(rite
Selecting this option causes a further prompt to be displayed:

>QUIT:
NAME OF OUTPUT FILE (<CR> TO RETURN) -->

The file in memory may now be saved under any diskette filename. You do
not need to specify the .TEXT suffix; it will be supplied automatically.
If you do not want .TEXT added to the filename, type a period following
the file specification. In response to the above prompt, you can also
type your filename, complete with .TEXT suffix, followed by file size
specification. This lets you store your file in a space other than the
largest unused area on the diskette.

If you wish to return directly to editing the file currently in
memory, without saving it, just press the RETURN key instead of typing
a filename. If a file with the specified filename already exists on
the specified diskette, you will be warned. For example, if you try
to write to MYDISK:MYFILE, and that file already exists on MYDISK:

you will be asked:

REMOVE OLD MYDISK:MYFILE.TEXT?

Type "Y" to continue. After your file has been
saved on diskette, the Editor displays a message similar to this:

>QUIT:

WRITING. .« ..

YOUR FILE IS 1978 BYTES LONG.

DO YOU WANT TO E(XIT FROM OR R(ETURN TO THE EDITOR?

If you type E for E(xit, the system leaves the Editor and returns to
the Command level. If you type R for R(eturn, you are again placed
in the Editor, with the cursor in the same position it occupied in the
file when Q was typed.

EDITOR 123

S(ave

When you choose this option, your new file will have the same name as
the file that was most recently called by the Editor. If the file you
S(ave was created at the current editing session and therefore does
not yet have a name, the file will be S(aved as SYSTEM.WRK.TEXT .

After you invoke the S(ave option, you will be asked if you want to
purge your original file. For example, if you G(et MYDISK:MYFILE from
the Filer, edit the file, Q(uit the Editor and then S(ave the updated
text, the following message will appear:

PURGE OLD MYDISK:MYFILE BEFORE S(AVE?

If you type "Y" the old file will be removed from the disk before the
new file is written out. This may cause the new file to overwrite the
old file. If you have no backup of the original file and it is a large
file, it would be safer to type '"N". When you type 'N" the old file
will not be overwritten and only will be removed when the new file is

successfully written to the disk. If there is not room to copy the new
file before destroying the old one, the message

ERROR: WRITING OUT THE FILE. PLEASE PRESS <SPACEBAR> TO CONTINUE
will appear. Pressing the spacebar will return you to the Editor.

Do not press RESET after you have given the system permission to
purge your original file; doing so may destroy both the old and new
versions of your file.

After your file has been saved on diskette, the Editor displays a
message similar to this:

>QUIT:

WRITINGesoos

YOUR FILE IS 1978 BYTES LONG.

DO YOU WANT TO E(XIT FROM OR R(ETURN TO THE EDITOR?

If you type E for E(xit, the system leaves the Editor and returns to
the Command level. If you type R for R(eturn, you are again placed

in the Editor, with the cursor in the same position it occupied in the
file when Q was typed.

124 APPLE PASCAL OPERATING SYSTEM

EDITOR COMMAND SUMMARY

SCREEN COMMANDS

CTRL-A Shows the other 4@-character 'page" of the display.
CTRL-Z Screen scrolls right and left to follow the cursor.

SPECIAL CHARACTERS

CTRL-K Produces left bracket: [
SHIFT-M Produces right bracket:]

CURSOR MOVES

right-arrow key Moves repeat-factor spaces right.

left-arrow key Moves repeat-factor spaces left.

CTRL-0 Moves repeat—-factor lines up.

CTRL-L Moves repeat-factor lines down.

spacebar Moves repeat-factor spaces in set direction.

CTRL-1 Moves repeat-factor tab positions in set direction.
RETURN key Moves to start of line that is repeat-factor

lines away, in set direction.
= Moves to start of latest text found, replaced
or inserted.

REPEAT-FACTOR

An integer from ¢ through 9999 typed before a move or command. If
repeat-factor is / the move or command is repeated as many times
as possible in the file.

SET DIRECTION

< 5 - All change set direction to backward
> . + All change set direction to forward

MOVING COMMANDS

J(ump: Jumps to file’s B(eginning or E(nd, or to previously set Marker.

P(age: Moves the cursor repeat-factor pages in the set direction.

EDITOR 125

F(ind: Looks in the set direction for the repeat-factor-th L(iteral or
T (oken occurrence of the <TARGET> string, which must be typed
with delimiters. S means use the same string as before.

TEXT CHANGING COMMANDS

I(nsert: Inserts text. Use left-arrow key to backspace over insertion.
CTRL-Q deletes back to the most recent RETURN character in the
current insertion. CTRL-X acts like CTRL-Q except that it also
deletes the RETURN.

D(elete: Deletes all text moved over by the cursor. Back up cursor to
undelete.

Z(ap: Deletes all text between the current cursor position and the
"equals position" (at the start of the latest text found,
replaced or inserted).

C(opy: Copies a diskette file, or what was last inserted, deleted or
zapped, into the file at the position of the cursor.

X(change: Replaces the character under the cursor with the character
typed. Each line must be done separately. Pressing the left-
arrow key causes the original character to re-appear.

R(eplace: Looks in the set direction for the next L(iteral or T(oken
occurrence of <TARG> string, and replaces it with <SUB> string.
Continues repeat-factor times. Both strings must be typed with
delimiters. V(erify option asks for permission to replace. §
means use the same <TARG> or the same <SUB> string as before.

FORMATTING COMMANDS

A(djust: Adjusts indentation of the line the cursor is on. Left-arrow
and right-arrow keys move the line left and right. Moving
cursor up or down adjusts lines above or below by same amount.

M(argin: Starting at the cursor position, adjusts all text between two
blank lines (one paragraph) to the margins which have been set.

MISCELLANEOUS COMMANDS

S(et: Sets a M(arker of the specified name at the current cursor
position. Sets options in the E(nvironment for A(uto-indent,
F(illing, margins, default search mode, and C(ommand characters.

V(erify: Redisplays the screen with the cursor centered.
Q(uit: Leaves the Editor. You may U(pdate the workfile, E(xit without

updating, R(eturn to the Editor, W(rite to any diskette file, or
S(ave to your original file.

126 APPLE PASCAL OPERATING SYSTEM

CHAPTER 5

128 INTRODUCTION
128 Diskfiles Needed
130 USING THE COMPILER

INTRODUCTION

The basic purpose of the Apple Pascal Compiler is to convert the text
of a Pascal program into the compressed P-code version of the program.
This P-code is the "machine language' of the Pascal pseudo-machine, or
"P-machine", described in this manual’s appendices on the P-

MACHINE. The P-code version of your program can then be run on

virtually any computer for which the P-machine interpreter has been
implemented.

The compiler control options recognized by the Apple Pascal Compiler
are described in the Apple Pascal Language Reference Manual. That

manual also contains a list of the error messages reported by the Apple
Pascal Compiler.

This chapter is written specifically for using the Apple Pascal
operating system with the Apple Pascal programming language and

the Apple Pascal Compiler. If you are using any other programming
language, you must first read that language’s reference manual for
special instructions on using this operating system with that language.

DISKFILES NEEDED

The following diskfiles allow you to invoke the Compiler explicitly:

Textfile to be (any diskette, any drive; default
Compiled is boot diskette’s text workfile
SYSTEM.WRK.TEXT, any drive; Pascal
compiler $I option may also
specify other source textfiles)
SYSTEM .COMPILER (any diskette, any drive; required)

SYSTEM.LIBRARY (boot diskette, boot drive; required
only if program USES Intrinsic Units;
Pascal compiler $U option may also
specify other library files)

SYSTEM.EDITOR (any diskette, any drive; optionalj;
to fix errors found by Compiler)
SYSTEM.SYNTAX (boot diskette, any drive; optional

messages given on entering Editor)

In addition to the above files, the following files may be needed if
you are invoking the Compiler automatically via the R(un command:

SYSTEM.LINKER (any diskette, any drive; required if
external routines need to be linked)
SYSTEM.LIBRARY (boot diskette, any drive; required to

contain needed external routines, if
Linker called)

128 APPLE PASCAL OPERATING SYSTEM

SYSTEM.PASCAL (boot diskette, boot drive; required
between Compiling, Linking and
eXecuting steps)

SYSTEM.LIBRARY (boot diskette, boot drive; required if
program uses long integers, does file
I1/0 using real numbers or SEEK, or
USES Intrinsic Units)

SYSTEM.CHARSET (any diskette, any drive; required only
if program uses WCHAR or WSTRING from
TURTLEGRAPHICS)

When you type C for C(ompile from the Command level, the file
SYSTEM.COMPILER must be available on a diskette in any on-line disk
drive. After the Compiler reports an error, if you elect to re-enter
the Editor by typing E for E(dit from the Compiler, the file
SYSTEM.EDITOR must be available in any disk drive.

On entering the Editor, a message describing your program’s error will
be given if the file SYSTEM.SYNTAX is available on the boot diskette.
SYSTEM. SYNTAX is optional; if it is not on the boot diskette the error
is reported by number. Compiler error messages corresponding to these
numbers are given in an appendix at the end of the Apple Pascal
Language Reference Manual. Some users will wish to save room on their
boot diskettes by removing the file SYSTEM.SYNTAX, referring to the
table of messages in the appendix, instead.

One-drive note: The files SYSTEM.COMPILER , SYSTEM.EDITOR , and
SYSTEM. SYNTAX are all on diskette APPLE@: , which is the normal one-
drive boot diskette. If you have been working on a program in the
Editor, and U(pdating the workfile, your boot diskette has all the
files needed to R(un or C(ompile the workfile. If you wish to R(un
or C(ompile a textfile that is not already on the boot diskette, use
the Filer’s T(ransfer command to transfer that textfile onto your
boot diskette before compiling. If your program requires Linking to
external routines, see this manual’s chapter THE LINKER for help.

Multi-drive note: The files SYSTEM.EDITOR and SYSTEM.SYNTAX are both
on diskette APPLEl: , which is the normal multi-drive boot diskette.
The file SYSTEM.COMPILER is on diskette APPLE2: , which is normally

kept in drive volume #5: in a multi-drive system. With APPLEl: in the
boot drive and APPLE2: in a non-boot drive, your system has all the
files needed to R(un or C(ompile the workfile.

Two-drive note: If you wish to R(un or C(ompile a textfile that is
not already on APPLEl: or APPLE2: , and your system has only two
drives, use the Filer’s T(ransfer command to transfer that textfile
onto either APPLEl: or APPLE2: before compiling. This T(ransfer is
not necessary on systems with three or more drives. Another

possibility for two-drive systems is to make APPLE@: your boot
diskette (just put APPLE@: in the boot drive and press the Apple’s

RESET key). This frees your second drive to hold a source or
destination diskette for compilations, saving you from T(ransferring

PASCAL COMPILER 129

the source file onto APPLEl: or APPLE2: . APPLEf: does not contain
SYSTEM.LINKER; if your program requires Linking to external routines,
use APPLEl: and APPLE2: .

If a compilation is so large that the Apple’s available memory is
insufficient, you can use the Filer to M(ake a four-block file
called SYSTEM.SWOPDISK on the diskette containing SYSTEM.COMPILER.
Before any attempt to read a new diskette directory (when finding an

Include-file for example) the system will first temporarily store the
bottom 2K bytes of the data heap in SYSTEM.SWOPDISK and then put the
diskette directory into that 2K area of the Heap. This saves 2K of
top-of-Heap memory. When the directory is no longer needed, the
contents of SYSTEM.SWOPDISK are stored back into their original Heap
locations.

USING THE COMPILER

The Compiler is invoked by typing C for C(ompile or R for R(un from

the outermost Command level of the Apple Pascal operating system. The
screen immediately shows the message

COMPILING...

The Compiler automatically compiles the boot diskette’s workfile
SYSTEM.WRK.TEXT or another workfile designated by the Filer’s G(et
command and saves the resulting code (if compilation is successful)
as SYSTEM.WRK-CODE . If there is a workfile, but you do not wish to
compile that file, use the Filer’s N(ew command to clear away the
workfile before compiling. If no workfile is available, you are
prompted for a source filename:

COMPILE WHAT TEXT?

You should respond by typing the name of the text file that you wish
to have compiled.

It is not necessary to type the suffix .TEXT ; that suffix is
automatically supplied by the Compiler. If you wish to defeat this

suffix-adding feature, to compile a textfile whose filename does not
end in .TEXT , type a period (.) after the last character of your
filename.

Next you will be asked for the name of the file where you wish to save
the compiled version of your program:

TO WHAT CODEFILE?

If you simply press the RETURN key the command will not be terminated,
as you might expect. Instead, the compiled version of your program
will be saved on the boot diskette’s workfile SYSTEM.WRK.CODE . This
is handy if you then wish to Run the program. Pressing the ESC key in
response to this prompt returns you to the outermost Commmand level.

130 APPLE PASCAL OPERATING SYSTEM

If you want the compiled version of your program to have the same
name as the text version of your program (of course, the suffix will
be .CODE instead of .TEXT), just type a dollar sign ($) and press
the RETURN key. This is a handy feature, since you will usually want
to remember only one name for both versions of your program. The
dollar sign repeats your entire source file specification, including
the volume identifier, so do NOT specify the diskette before typing
the dollar sign. Note that this use is different from the use of the
dollar sign in the Filer.

If you want your program stored under another filename, type the
desired filename.

It is not necessary to type the suffix .CODE ; that suffix is
automatically supplied by the Compiler. If you wish to defeat this
feature, in order to specify an output filename that does not have a
.CODE suffix, type a period (.) after the last character of your
output filename. Ending your output filename with a file size
specification (with or without a following period) also suppresses the
addition of the .CODE suffix. The file is then opened observing the
given file size (on closing, the file will have its actual size). The
default file size for opening this file is [@]. See this manual's
chapter THE FILER for details about file size specifications.

The Compiler then generates P-code codefiles to run directly on the
Pascal P-machine.

When the Apple is compiling, messages on the screen show the progress
of the compilation. The Apple Pascal Language Reference Manual
describes these messages in detail.

If the compilation is successful (that is, no programming errors

are detected), the Compiler saves the compiled code under the filename
SYSTEM.WRK.CODE on the boot diskette, or under another filename

that you specified earlier.

The code workfile, SYSTEM.WRK.CODE, is automatically erased when any
text workfile is U(pdated from the Editor.

Should the Compiler detect an error in your program, the screen will
show the text surrounding the error, an error number, and a marker
<<<< pointing to the symbol in the source where the error was
detected. For example, you might see the following message:

[€€<<
LINE 9, ERROR 18: <SP>(CONTINUE), <ESC>(TERMINATE), E(DIT

Pressing the spacebar instructs the Compiler to continue the
compilation, in case you want to find more of the errors right now.
Pressing the ESC key causes termination of the compilation and return
to the Command level. Typing E sends you to the Editor, which
automatically reads in the workfile, ready for editing.

PASCAL COMPILER 131

Any error whose number is 40@ or greater signifies a fatal error which
causes ccompilation to terminate even if the spacebar is pressed.

If you were compiling a file that was not the workfile, this prompt
appears when you enter the Editor:

>EDIT:
NO WORKFILE IS PRESENT. FILE? (<RET> FOR NO FILE <ESC-RET> TO EXIT,

You should respond by typing the filename of the file you were
compiling, and that file will then be read into the Editor. Only the
main program file will be read into the Editor automatically. If your
program uses Include-files, those files must be read in separately.
See the Apple Pascal Language Reference Manual for details about the
Include-file compiler option.

When the correct file has been read into the Editor, the first line
displays the error message (or the error number, if the file
SYSTEM.SYNTAX was not available on the boot diskette) and the cursor is
placed at the symbol where the error was detected.

The error messages corresponding to the error numbers reported by the
Apple Pascal Compiler are given the Apple Pascal Language Reference
Manual. Some people may wish to save room on the boot diskette by
removing SYSTEM.SYNTAX and using the printed table of messages,
instead.

The use of compiler control options is described in the Apple Pascal
Language Reference Manual.

132 APPLE PASCAL OPERATING SYSTEM

PASCAL COMPILER 133

CHAPTER 6

136
136
138
142
142
143
144
149

149

151
151
152
152
152
152
153
153
153
155
157

157
158

159

162
165
166
167

169

172

INTRODUCTION
Diskfiles Needed
USING THE ASSEMBLER
Reference Symbol Table
Example
An Assembly-Language Routine
The Assembled OQutput Listing
A Pascal Program which
Calls the Assembled Routine
Compiling, Linking and Running
the Calling Program
ASSEMBLER INFORMATION
Syntax of Assembly Files
Syntax of Assembly Statements
Identifiers
Labels
Local Labels
Operators
Constants
Expressions
Linkage to Assembly Routines
THE ASSEMBLER DIRECTIVES

An Overview
Routine-Delimiting Directives
«PROC +FUNC «END

Label Definitions and
Space Allocation Directives

«ASCIT «BLOCK .EQU «ABSOLUTE
«BYTE «WORD «ORG « INTERP
Macro Facility Directives
«MACRO « ENDM
Conditional Assembly Directives
JIF +ELSE «-ENDC
Host-Communication Directives
«CONST © «PUBLIC «PRIVATE
External Reference Directives
«DEF +REF
Listing Control Directives
«LIST +«MACROLIST «PATCHLIST
«NOLIST +«NOMACROLIST «NOPATCHLIST

File Directive
+« INCLUDE

«PAGE
TITLE

172
172
172
173

173
173
173
173
174
174

ASSEMBLER DIRECTIVE SUMMARY
Metasymbol Notation
Routine Delimiting Directives
Label Definitions and
Space~Allocation Directives
Macro Facility Directives
Conditional Assembly Directives
Host-Communication Directives
External Reference Directives
Listing Control Directives
File Directive

INTRODUCTION

You may occasionally wish to write small assembly-language routines

and use them within a Pascal host program to provide low-level or time-
critical facilities. The Assembler (in conjunction with the Linker)
meets this need. Apple Pascal’s 6502 Assembler is a version of the
UCSD Adaptable Assembler, specifically implemented for the 6502 micro-
processor on which the Apple Computer is based.

This assembler was modeled after The Last Assembler (TLA) developed at

the University of Waterloo. The basic concept behind both the TLA and
the UCSD Adaptable Assemblers is the use of a central machine-
independent core that is common to all versions of the assembler.

This central core is augmented with machine-specific code to handle
the peculiarities of each individual machine.

This chapter is intended for a reader who is already fluent in at
least one assembly language.

DISKFILES NEEDED

The following diskfiles allow you to use the Apple Pascal system’s
6502 Assembler:

SYSTEM.ASSMBLER (any diskette, any drive; required)
6500.0PCODES (any diskette, any drive; required)
6500.ERRORS (any diskette, any drive; optional
error messages given in Assembler)
Textfile to be (any diskette, any drive; default
Assembled is boot diskette’s workfile

SYSTEM.WRK.TEXT, any drive)

SYSTEM.EDITOR (any diskette, any drive; optionalj;
to fix errors found by Assembler)

SYSTEM.ASSMBLER contains the Assembler itself, and 6500.0PCODES
contains the op codes for the 6500 series of microprocessors (the
Apple uses a 6502). These files are normally found on diskette
APPLE2: . They must be available on any diskette in any of the
system’s disk drives when you type A from Command level to invoke the
Assembler.

6500.ERRORS , normally found on diskette APPLE2: , is an optional file

containing the Assembler syntax error messages. If it is not
available, the Assembler will report syntax errors by number and you
can look up the error description in Appendix D, Table 6.

When an assembly error is detected, you are given the option of
returning directly to the Editor to correct the problem. If you type

136 APPLE PASCAL OPERATING SYSTEM

E for E(dit from the Assembler, the file SYSTEM-EDITOR (normally found
on your system diskette, APPLE@: or APPLEl:) should be available at

that time, on any diskette in any disk drive.

One-drive note: In order to edit and assemble a textfile on a one-

drive system, you may wish to use the Filer to T(ransfer the files

SYSTEM.ASSMBLER and 650@.0PCODES from APPLE2: to APPLEl: , and then
use APPLEl: as your boot diskette. This leaves 3§ blocks unused on
APPLELl: , for your source textfile and workfiles.

Multi-drive note: With APPLEl: in the boot drive and APPLE2: in drive

volume #5:, your system has all the files needed to E(dit, C(ompile,
A(ssemble, and L(ink programs.

Two-drive note: If you wish to E(dit and A(ssemble a textfile that is
not already on APPLEl: or APPLE2: , and your system has only two
drives, use the Filer’s T(ransfer command to transfer that textfile
onto either APPLEl: or APPLE2: before assembling.

A hidden disk need is the Assembler’s use of a small area (usually less
than four blocks) on the boot diskette, in any drive, to store a
temporary intermediate file containing Linker information. This diskette

file does not normally appear in the diskette’s directory, but space for
it must be available on the boot diskette.

An attempt to assemble without boot diskette space for this intermediate
file (after opening both the output codefile and the assembled listing’s
output textfile) causes the message IO ERROR: NO ROOM ON VOL , after
which you must press the spacebar to reinitialize the system. Your boot
diskette may then show a new file named LINKER.INFO, of zero length and
type "Infofile", often between two existing files. You may remove this
file or not, as you wish.

In ordinary use of the Assembler, this problem does not arise, as the
file size specification [*] is the default used when opening both the
output codefile and the assembled listing’s textfile. This default--
unusual in the Apple Pascal system--automatically saves room for the

Assembler’s intermediate file.

However, if the output codefile exceeds the default file size, that file
is automatically extended to maximum [P] size. If there was only one
unused area on the boot diskette, this extension will eliminate the
space needed by the temporary file. You can overcome this unlikely
problem by specifying an appropriate file size for the output codefile,
or by making sure there are at least two non-contiguous unused areas on
the diskette.

If an assembly is so large that the Apple’s available memory is
insufficient, you can use the Filer to M(ake a four block file called

SYSTEM.SWAPDISK on the diskette containing SYSTEM.ASSEMBLER . Before

you attempt to read a new diskette directory (when finding an Include-
file, for example), the system will first temporarily store the bottom

6502 ASSEMBLER 137

2K bytes of the data Heap in SYSTEM.SWAPDISK and then put the diskette
directory into that 2K area of the Heap. This saves 2K bytes of top-of-
Heap memory. When the directory is no longer needed, the contents of
SYSTEM.SWAPDISK are stored back into their original Heap locatioms.

USING THE ASSEMBLER

The Assembler is invoked by typing A for A(ssemble from the
outermost Command level of the Apple Pascal operating system.
The screen immediately shows the message

ASSEMBLING...

The Assembler automatically assembles the boot diskette’s workfile
SYSTEM.WRK.TEXT or another workfile designated by the Filer’s G(et
command and saves the resulting code (if assembly is successful) as

SYSTEM.WRK.CODE . If no workfile is available, you are prompted for a
source filename:

ASSEMBLE WHAT TEXT?

You should respond by typing the name of the text file that you wish
to have assembled.

It is not necessary to type the suffix .TEXT ; that suffix is
automatically supplied by the Assembler, if you don’t type it. If you
wish to defeat this suffix-adding feature, to assemble a textfile whose
filename does not end in .TEXT , type a period (.) after the last
character of your filename.

Next you will be asked for the name of the file where you wish to save
the assembled version of your routine:

TO WHAT CODEFILE?

Pressing ESC in response to this prompt returns you to the outermost
Command level.

If you simply press the RETURN key the command will not be terminated,
as you might expect. Instead, the assembled version of your routine
will be saved on the boot diskette’s workfile SYSTEM.WRK.CODE .

If you want the assembled version of your routine to have the same
name as the text version of your routine (of course, the suffix will
be .CODE instead of -TEXT), just type a dollar sign ($) and press
the RETURN key. This is a handy feature, since you will usually want
to remember only one name for both versions of your routine. The
dollar sign repeats your entire source file specification, including
the volume identifier, so do NOT specify the diskette before typing
the dollar sign.

If you want your routine stored under another filename, type the
desired filename.

138 APPLE PASCAL OPERATING SYSTEM

It is not necessary to type the suffix .CODE ; that suffix is
automatically supplied by the Assembler. If you wish to defeat this
suffix-adding feature, in order to specify an output filename that does
not have a .CODE suffix, type a period (.) after the last character of
your output filename.

Ending your output filename with a file size specification (with or
without a following period) also suppresses the addition of any
suffix. The file is then opened observing the given file size (on
closing the file will have its actual size).

The usual default file size for opening this file is [*]. If this
default allocates insufficient space for your codefile, you may wish
to specify a different file size. Ending the given filename with a
period changes the default file size to [@]. If the output codefile
is being stored on the boot diskette, and if there is only one unused
space on the diskette, this causes the output codefile to initially
occupy all remaining space on the diskette, leaving no room for the
required assembly-intermediate file.

Now that the source and object files for the assembly have been
specified, the next prompt line is:

6500 ASSEMBLER II.@ [D.4]
OUTPUT FILE FOR THE ASSEMBLED LISTING (<CR> FOR NONE):

You may now specify where you want the Assembler to send the assembled
listing, or just press the RETURN key if you do not want this listing.
(If you wish to abandon the assembly at this point, just press the ESC
key.) If you specify a diskfile for the assembled listing, you do not
need to type the .TEXT suffix; .TEXT will be added for you
automatically if it is needed. Unlike many parts of the system,
ending the specified filename with a period does NOT suppress the
addition of the .TEXT suffix. However, if the filename you type
includes the string .TEXT anywhere in it, the filename is used
exactly as typed. If the filename ends in a .TEXT followed by a file
size specification, the file is opened observing the given file size
(on closing the file will have its actual size). The default size for
opening this file is [#*].

The assembled listing is a detailed display of the progress of the
assembly showing location numbers, object code, source code, and other
useful information. This listing is independent of the minimal
assembled object code that is saved as the final output of the
assembly. If an assembled listing is stored as a diskette file, it
can be sent to the Editor, but non-standard control characters in the

6502 ASSEMBLER 139

file make it very difficult to edit. For instance, form feeds (CTR-Ls)
in the file are interpreted as clear screen characters by the Editor.
Type /R/<CTRL>//<RET>/ immediately after entering the Editor for easier
reading. See the EXAMPLE later in this chapter for a sample assembled
listing.

If you wish, you can have the assembled listing sent to a diskette
file or to the screen or printer. As usual for a console or printer
output, the words CONSOLE or PRINTER must be followed by a colon, i.e.
CONSOLE: . If the colon is omitted the listing is sent to a file of
the name given, on the Prefix diskette. At this point, the program
reports whether or not the output device (if any) is on line.

The program then starts assembling the workfile. If you did not tell
the Assembler to send the assembled listing to CONSOLE: , a simple
display of the assembly’s progress appears on the screen. As assembly
of your routine continues, the Assembler displays, on the left-hand

side of the screen, one dot for each line of code assembled and a line
counter every 50 lines. Upon completing each procedure or function, you

will see the number of words of available symbol table space in brackets
and the message

CURRENT MINIMUM SPACE IS xx WORDS

When an Include-file is started, the Assembler displays on the screen:
«INCLUDE <filename>

indicating which file has been included. If you told the Assembler to
send the assembled listing to CONSOLE: , that listing replaces the
simpler screen display.

If the Assembler encounters an error, a message shows the offending
text and indicates the nature of the error. For example, you might see

$04 .EQU $
IDENTIFIER PREVIOUSLY DECLARED

The error message will be taken from the file 6500.ERRORS if
possible. If that is not possible, due to space limitations or the
absence of the errors file, the error message number is given. In
that case, you might see

$04 .EQU $
ERROR # 9
"6500.ERRORS" FILE NOT AROUND

140 APPLE PASCAL OPERATING SYSTEM

A complete list of Assembler syntax error messages corresponding to
these error numbers appears in this manual’s TABLES appendix. Note

that the descriptive error message is given at the time the error is
detected, not on entering the Editor as it is done in the Compiler.

After each error is found, you are given the following choice:

E (DIT,<SPACE>,<ESC>

This is similar to the choice that you are given when the Compiler
encounters an error. If you wish to proceed with the assembly,
looking for more errors, press the spacebar. If you just wish to

terminate the assembly, returning to the outermost Command level,
press the ESC key. If you type E , the Editor is loaded into the

computer, and the workfile is read into the Editor, ready for
editing. If you were assembling a file which was not the workfile,
this prompt appears:

>EDIT:
NO WORKFILE IS PRESENT. FILE? (<RET> FOR NO FILE <ESC-RET> TO EXIT)

You should now type the filename of the sourcefile used for the
assembly or the name of the Include-file if one exists. That file will

then be read into the Editor.

When the correct file has been read in to the Editor, the first line
displays an error message (or an error number if the file
SYSTEM.SYNTAX is not available on the boot diskette) and the cursor is
placed at the point in the text where the error was detected.

The Editor does not display specific error messages reported by the
Assembler. Therefore before entering the Editor from the Assembler you
should first note the specific error reported by the Assembler.

At the end of a completed assembly, the Assembler indicates that it is
finished and tells you how many errors were found.

If the assembly was successful, the assembled code is written out to
the boot diskette’s workfile SYSTEM.WRK.CODE or (if no workfile was
available) to the file that you specified in the beginning. This code
file cannot be executed by itself but must be used by Linking it in
with a Pascal host program file. For information about manual
Linking, see the EXAMPLE later in this chapter, and also see this
manual’s chapter THE LINKER. For information about placing an
assembled routine into SYSTEM.LIBRARY , so that R(un will
automatically link the correct library routines into the Pascal host
program, see this manual’s chapter UTILITY PROGRAMS.

The boot diskette’s code workfile, SYSTEM.WRK.CODE, is automatically
erased when any text workfile is U(pdated from the Editor.

6502 ASSEMBLER 441

REFERENCE SYMBOL TABLE

In the assembly listing, an alphabetic reference symbol table
(SYMBOLTABLE DUMP) is generated following the assembly of each
procedure or -function. Each entry in the reference symbol table is
divided into three parts. The first part is the symbol identifier,
the second part shows the symbol type, and the third part shows the
value (if the symbol represents an absolute) or the definition

location (if the symbol represents a label). The definition location
is given as a high-byte first number and corresponds to one of the

index numbers in the left-most column of the assembly listing. If the
symbol represents neither an absolute nor a label, dashes appear in

the third part of the entry. A vertical bar (|) ends each entry.
Here is a reference symbol table from the upcoming example:
PAGE - 2 PADDLE FILE:ASMDEMO SYMBOLTABLE DUMP
AB - Absolute LB - Label UD - Undefined MC - Macro
RF - Ref DF - Def PR - Proc FC - Func
PB - Public PV - Private CS - Consts

DONE LB @@1F| PADDLE FC —---| POP MC ———-| PREAD2
LB #@16] RETURN AB 0009 |

The first entry shows a LaBel named DONE, defined at location (¢J1F.
The second entry shows that PADDLE is the name of the FunCtion. The
last entry shows that RETURN is an ABsolute which has been assigned
the value (@@ . Note that the fourth entry

PREAD2 LB §#¢16|

is broken onto two different lines.

EXAMPLE

This example will show the following:

1) A sample assembly-language routine which includes an external
function (.FUNC), and an external procedure (.PROC).

2) The assembled routine, showing the Assembler’s complete
output listing.

3) A Pascal program which calls our assembly-language external
function and procedure.

4) How to Compile the Pascal program and then Link in the
assembly-language routine, in order to eXecute the program.

142 APPLE PASCAL OPERATING SYSTEM

An Assembly-Language Routine

The following sample assembly-language routine contains an external
function and an external procedure. The function is the game paddle
function, and the procedure is the routine to set or clear one of th

e

game TTL outputs. Both are provided for you, completely assembled and

ready to use, in the UNIT named APPLESTUFF (see the Apple Pascal
Language Reference Manual). See the later sections of the current

chapter for details about the Assembler directives .FUNC and .PROC .

The following shows the assembly-language routine, just as you might
type it into the computer, using the Editor:

SAMPLE MACRO POPS 16 BIT ARGUMENT

e we we

«MACRO POP
PLA

STA 71

PLA

STA 7Z1+1

« ENDM

.FUNC PADDLE,1 ;ONE WORD OF PARAMETERS

SAMPLE GAME PADDLE FUNCTION FOR PASCAL
(This function provided in APPLESTUFF unit.)

FUNCTION PADDLE(SELECT: INTEGER): INTEGER;

PO we we we we we we

ETURN .EQU @ ;sTEMP VAR FOR RETURN ADDR
sNOTE: @..35 HEX AVAILABLE
POP RETURN ;SAVE PASCAL RETURN ADDR
PLA sDISCARD 4 BYTES STACK BIAS
PLA ;(ONLY DO FOR .FUNC)
PLA
PLA
PLA 3GET LSB SELECT PARAMETER
AND #3 ;FORCE INTO RANGE §..3
TAX
PLA sDISCARD MSB SELECT PARAM
LDA @C@79 sTRIGGER PADDLES
LDY #6 ;INIT COUNT IN Y REG
NOP ;COMPENSATE FIRST COUNT
NOP
PREAD2 LDA @#CP64,X sTEST PADDLE

BPL DONE ;BRANCH IF TIMER DONE
INY ;ELSE INC Y EVERY 12 USEC
BNE PREAD2 ;LOOP UNLESS 255 EXCEEDED
DEY sMAKE @ INTO 255 (MAX COUNT)

6502 ASSEMBLER

143

DONE LDA #¢

PHA sPUSH MSB OF RETURN VALUE=(
TYA

PHA sPUSH LSB OF RETURN VALUE
LDA RETURN+1 sRESTORE PASCAL RETURN ADDR
PHA

LDA RETURN

PHA

RTS sAND RETURN TO PASCAL CALLER

«PROC TTLOUT,2 ;TWO WORDS OF PARAMETERS

ROUTINE TO SET OR CLEAR ONE OF THE TTL I/0 BITS
(This procedure provided in APPLESTUFF unit)

3
bl
5 PROCEDURE TTLOUT (SELECT: INTEGER; DATA: BOOLEAN);
b
RETURN .EQU ¢ sTEMP RETURN ADDR
POP RETURN sSAVE PASCAL RETURN ADDRESS
s POP PARAMETERS, LAST FIRST
PLA sGET LSB BOOLEAN DATA 1=TRUE
LSR A sSAVE BOOLEAN IN CARRY
PLA sDISCARD MSB BOOLEAN DATA
PLA sGET LSB SELECT
AND #@3 sTREAT IT MOD 4
ROL A sDOUBLE, ADD DATA FOR INDEX
TAY 3PUT I/0 STROBE INDEX IN Y
LDA fC@58,Y sACTIVATE I1/0 STROBE
PLA sDISCARD MSB SELECT PARAM
LDA RETURN+l1 sRESTORE PASCAL RETURN ADDR
PHA
LDA RETURN
PHA
RTS 3sGO BACK TO PASCAL
«END sEND OF ASSEMBLY

The Assembled Output Listing

The preceding assembly-language routine, which we saved in the
diskette file named MYDISK:ASMDEMO.TEXT , can now be assembled by the
Apple Pascal 6502 Assembler. From the Command level, type the letter
A for A(ssemble, and a dialog similar to the following takes place:

ASSEMBLING. ..

ASSEMBLE WHAT TEXT? MYDISK:ASMDEMO

TO WHAT CODE FILE? MYDISK:ASMDEMO

6500 ASSEMBLER II.§ [D.4]

OUTPUT FILE FOR ASSEMBLED LISTING: (<CR> FOR NONE) PRINTER:

144 APPLE PASCAL OPERATING SYSTEM

The first response tells the Assembler to take the text version of the
routine from the file MYDISK:ASMDEMO.TEXT . The second response says to
save the assembled code version of the routine (when the assembly is
complete) in the file MYDISK:ASMDEMO.CODE . By using the same name, we
have fewer filenames to remember, and most commands will automatically
choose the correct version (text or code). You could have accomplished
the same thing by typing a dollar sign ($) as the second response.

If the text version of the routine had been available in the boot
diskette’s workfile SYSTEM.WRK.TEXT (or another workfile designated
by the Filer’s G(et command), the Assembler would automatically have
assembled that file and would automatically have stored the assembled
code version as SYSTEM.WRK.CODE .

The last response (PRINTER:) sends the assembled listing to the

printer, and lets the usual Assembler display appear on the screen.
The screen display looks something like this:

[11G38]< @>eececccccccss
2 BLOCKS FOR PROCEDURE CODE 9834 WORDS LEFT
[9827]< 13>ceccccccccsessccccccscsccsscscsvaccssocns
[996@]< 5@>cecccecs
CURRENT MINIMUM SPACE IS 9794 WORDS
[9787]1< 58>ccececsccccccccssssccscscsccnccns
CURRENT MINIMUM SPACE IS 9794 WORDS
[98¢8]1< 9¢>
ASSEMBLY COMPLETE: 9¢ LINES
0 ERRORS FLAGGED ON THIS ASSEMBLY

Meanwhile, the printer has been printing the assembled listing (if we
had responded CONSOLE: , the assembled listing would have replaced the
Assembler’s usual screen display). The assembled listing appears
approximately as shown below:

PAGE - ¢

Current memory available: 16613

pada |

0003 | H

o008 | 3

Podd | ; SAMPLE MACRO POPS 16 BIT ARGUMENT
003 | H

Po0d | «MACRO POP
000 | PLA

003 | STA %1
Poad | PLA

003 | STA %1+1
Po0d | +ENDM
0000 |

0080 |

2 blocks for procedure code 9834 words left

6502 ASSEMBLER 445

PAGE - 1 PADDLE FILE: ASMDEMO
P00 | .FUNC PADDLE,1 ;ONE WORD OF PARAMETERS

Current memory available: 10@56

Pood | 5

P00 | H

PO0d | s SAMPLE GAME PADDLE FUNCTION FOR PASCAL

0003 | ; (This function provided in APPLESTUFF unit.)
o3| H

Po0d | ; FUNCTION PADDLE(SELECT: INTEGER): INTEGER;

000 | H

003 | H

Po00| G000 RETURN .EQU 1) ;TEMP VAR FOR RETURN ADDR
PP0d | snote: P..35 hex available
Po00 |

0000 | POP RETURN sSAVE PASCAL RETURN ADDR
PPPB| 68 # PLA

P@P1| 85 ¢¢ # STA RETURN

p9@3| 68 # PLA

pggs| 85 @1 # STA RETURN+1

pgg6| 68 PLA ;DISCARD 4 BYTES STACK BIAS
PP@7| 68 PLA s (ONLY DO FOR .FUNC)
p@@8| 68 PLA

00@9| 68 PLA

PPPA| 68 PLA sGET LSB SELECT PARAMETER
Pp9@gB| 29 @3 AND #3 ;FORCE INTO RANGE §..3 .
PO@D | AA TAX

PPPE| 68 PLA sDISCARD MSB SELECT PARAM
Pp@gF| AD 7¢C@ LDA ¢Cp7¢ ;TRIGGER PADDLES

pp12| AP 09 LDY #¢ sINIT COUNT IN Y REG

P@14| EA NOP ;COMPENSATE FIRST COUNT
#@15| EA NOP

p@16| BD 64C@ PREAD2 LDA fCP64,X ;TEST PADDLE

PEL9| 1@** BPL DONE sBRANCH IF TIMER DONE

¢@1B| C8 INY ;ELSE INC Y EVERY 12 USEC
#@1C| DOPF8 BNE PREAD2 ;LOOP UNLESS 255 EXCEEDED
PPLE| 88 DEY sMAKE @ INTO 255 (MAX COUNT)
P@19* @@

PP1F| A9 ¢¢ DONE LDA #¢

Pp@21| 48 PHA ;PUSH MSB OF RETURN VALUE=(
P@22| 98 TYA

#@23| 48 PHA sPUSH LSB OF RETURN VALUE
p@24| A5 @1 LDA RETURN+1 ;RESTORE PASCAL RETURN ADDR
PP26| 48 PHA

Pp927| A5 0@ LDA RETURN

p@29| 48 PHA

P@2A| 60 RTS sAND RETURN TO PASCAL CALLER
P@28 |

$@2B|

146 APPLE PASCAL OPERATING SYSTEM

PAGE - 2 PADDLE FILE:ASMDEMO SYMBOLTABLE DUMP

AB - Absolute LB - Label UD - Undefined MC - Macro
RF - Ref DF - Def PR - Proc FC - Func
PB -~ Public PV - Private CS - Consts

DONE LB #@1F| PADDLE FC —--| POP MC ——-==]
PREAD2 1B $@¢16] RETURN AB $@¢@|

PAGE - 3 PADDLE FILE:ASMDEMO

Current minimum space is 9794 words

PAGE - 4

poge |

FILE:ASMDEMO

«PROC TTLOUT,2 ;TWO WORDS OF PARAMETERS

Current memory available: 10956

Poed|
pogg |
poee|
Pa00 |
P000 |
Poeg |
o060 |
000 |
0000 |
poed|
Pe00 |
pog1 |
p003 |
Po04 |
9906 |
@06 |
0087 |
po98 |
#0089 |
POGA |
gogc|
P9¢D |
POPE |
PP11|
PP12|
PP14 |
P@15|
P17 |

)

68
85

85

)
g1

@3

58C@
@1
g9

#
#
#
#

ROUTINE TO SET OR CLEAR ONE OF THE TTL I/0 BITS
(This procedure provided in APPLESTUFF unit)

5
H
3
b
’
s PROCEDURE TTLOUT(SELECT: INTEGER; DATA: BOOLEAN);
5
R

ETURN .EQU) sTEMP RETURN ADDR
POP RETURN sSAVE PASCAL RETURN ADDRESS
PLA
STA RETURN
PLA

STA RETURN+1
sPOP PARAMETERS, LAST FIRST

PLA sGET LSB BOOLEAN DATA 1=TRUE
LSR A 3SAVE BOOLEAN IN CARRY

PLA sDISCARD MSB BOOLEAN DATA
PLA 3GET LSB SELECT

AND #03 sTREAT IT MOD 4

ROL A sDOUBLE, ADD DATA FOR INDEX
TAY sPUT I/0 STROBE INDEX IN Y
LDA @CP58,Y sACTIVATE I/0 STROBE

PLA sDISCARD MSB SELECT PARAM
LDA RETURN+1 sRESTORE PASCAL RETURN ADDR
PHA

LDA RETURN

PHA

6502 ASSEMBLER 447

g018| op RTS ;GO BACK TO PASCAL
poL9|

P919|

9919

¢@19| «END sEND OF ASSEMBLY
PAGE - 5 TTLOUT FILE:ASMDEMO SYMBOLTABLE DUMP

AB - Absolute LB - Label UD - Undefined MC - Macro
RF - Ref DF - Def PR - Proc FC - Func
PB - Public PV - Private CS - Consts

POP MC —---| RETURN AB @9p@| TTLOUT PR —=—-
PAGE - 6 TTLOUT FILE:ASMDEMO

Current minimum space is 9794 words
Assembly complete: 92 lines

@ Errors flagged on this Assembly

Only the assembled object code from the preceding assembly listing
(the second column of information on PAGE-1 and on PAGE-4) is saved
in the file MYDISK:ASMDEMO.CODE .

NOTES about the preceding sample assembly listing:

1) The location values in the symbol table dump refer to the
locations in the listing.

2) The *%* ‘s in the listing (see PAGE-1 of the listing, for
example) call attention to the use of a label not yet
defined. The Assembler displays one * for each hexadecimal
digit to be filled in later.

3) If a * appears after the location number at the left of the
listing, it indicates that a forward reference occurring

earlier in the assembly has been resolved. The number to the
left of the * is the location where the reference occurred

while the number to the right is the new contents of that
location. See PAGE-1 of the listing, for example.

148 APPLE PASCAL OPERATING SYSTEM

4) The Apple Pascal 65p2 Assembler uses the following non-
standard notation for indirect addressing:

Apple Pascal 6502 Assembler Standard 6502 Assembler
LDA @QLOC1,Y LDA (LoCl),Y
LDA @LOC2,X LDA (LOC2,X)
JMP @GOVECT JMP (GOVECT)

A Pascal Program which
Calls the Assembled Routine

The following is a sample Pascal program which uses the external
function and procedure assembled earlier:

PROGRAM CALLASM;

(* DEMONSTRATES CALLING ASSEMBLY LANGUAGE PROCEDURES %)

VAR I: INTEGER;

PROCEDURE TTLOUT (SELECT: INTEGER; DATA: BOOLEAN);
EXTERNAL;

FUNCTION PADDLE(SELECT: INTEGER): INTEGER;
EXTERNAL;

BEGIN
FOR I:= 1 TO 1¢¢@ DO
BEGIN
WRITELN (PADDLE(@):3,” ‘,PADDLE(1):3);
TTLOUT (¢#,0DD(I))
END
END.

Compiling, Linking and Running
the Calling Program

To use the Pascal program CALLASM, you must compile the text version
shown above to make a compiled P-code version. This is done from the
Command level by typing C for C(ompile. When you do this, a dialog
similar to the following takes place (our program CALLASM was saved in
the text file named MYDISK:CALLASM.TEXT):

COMPILING. ..
COMPILE WHAT TEXT? MYDISK:CALLASM
TO WHAT CODEFILE? MYDISK:CALLASM

6502 ASSEMBLER 149

The first response tells the Compiler to compile the text that is
found in the file MYDISK:CALLASM.TEXT . The second response tells the
Compiler to save the resulting compiled code in the file
MYDISK:CALLASM.TEXT . Again, we used the same name for the text
version and for the code version of the program, to save us
remembering two different names. (Again, we could have typed the
second response as $.)

If the text version of the Pascal program had been available in the
boot diskette’s workfile SYSTEM.WRK.TEXT (or another workfile
designated by the Filer’s G(et command), the Compiler would
automatically have compiled that text, and would have saved the
resulting code version as SYSTEM.WRK.CODE on the boot diskette.

At this point, if there are no errors in the program, CALLASM is
compiled; the resulting P-code version is stored as MYDISK:CALLASM.CODE
Messages similar to the following will then appear on the screen:

PASCAL COMPILER II.1 [B2B]
< [D
TTLOUT [2533 WORDS]

< 8>e0s
PADDLE [25@4 WORDS]
< 11>...

CALLASM [2515 WORDS]

< 14>ce0se

19 LINES

SMALLEST AVAILABLE SPACE = 2515 WORDS

However, CALLASM is still not ready to be run: the external assembly-

language function and procedure in MYDISK:ASMDEMO.CODE must now be

Linked into the Pascal program. To do this, from the Command level

type an L for L(ink, and a dialog similar to the following will take place:
LINKING...

LINKER II.1 [A4]

HOST FILE? MYDISK:CALLASM (Your main Pascal program)
OPENING MYDISK:CALLASM.CODE

LIB FILE? MYDISK:ASMDEMO (The routine to link in)
OPENING MYDISK:ASMDEMO.CODE

LIB FILE? (Press RETURN for last file)
MAP NAME? (Press RETURN for no map file)

READING CALLASM
READING PADDLE
OUTPUT FILE? MYDISK:FINALCALL.CODE (Final product; note .CODE)
LINKING CALLASM # 1
COPYING FUNC PADDLE
COPYING PROC TTLOUT

At last! The file FINALCALL.CODE now contains your compiled Pascal

program CALLASM together with the linked-in assembly-language routines
PADDLE and TTLOUT. You may now X(ecute the program FINALCALL.

150 APPLE PASCAL OPERATING SYSTEM

ASSEMBLER INFORMATION

SYNTAX OF ASSEMBLY FILES

All objects declared before the first .PROC or .FUNC are available for
use throughout the assembly. No code is allowed to be generated
before the first .PROC or .FUNC . The symbol table is reduced at the
beginning of each .PROC or .FUNC to the point where it was at the
start of the first .PROC or .FUNC .

All assemblies must end with a .END . However, each .PROC or .FUNC
before the last one is ended by the occurrence of the next .PROC or

.FUNC . Only the last one should end with a .END , as all text beyond
the .END is ignored by the Assembler.

A general syntax diagram for all assembly files looks like this:

any non-code code-generating
—D generating operations and [y .END

operations directives

ASSEMBLY-FILE SYNTAX
The non-code-generating directives are:
«EQU «MACRO .IF -DEF .LIST «MACROLIST «PAGE
«ABSOLUTE «ENDM .ELSE <REF «NOLIST «NOMACROLIST .TITLE
« INTERP -ENDC +PATCHLIST
+«NOPATCHLIST

The body of a macro definition is a non-code-generating operation.

6502 ASSEMBLER 151

SYNTAX OF ASSEMBLY STATEMENTS

Identifiers

Identifiers are character strings starting with an alpha character.
Other characters must be alphanumeric or the ASCII underline (_).
Only the first eight characters are meaningful to the Assembler even
though more may be entered.

The Assembler makes only one pass through the source. On encountering
an undefined identifier in an expression, something must be assumed
about the nature of the identifier in order for the assembly to
continue. It is therefore assumed that the undefined identifier will
eventually be defined as a label, which is the most probable case.

Any identifier which is not a label must be defined before it is used.

Labels

Only labels and comments may begin in the first column, with no
preceding spaces. Labels may optionally be followed by a colon.
If a statement has no label, the first column must contain a space.

Labels may be equated to an expression containing labels and/or
absolutes. You must define a label before it is used unless it will
simply be equated to another label.

Local Labels

Local labels must have §$ as the first non-space character, and may

be up to 8 digits long. Local labels may not occur on the left-hand
side of an equate (.EQU).

Local labels are mainly used to jump around within a small segment of
code without having to use up storage area needed by regular labels.
The local label stack may hold up to 21 labels. The local label

stack is emptied each time a regular label is encountered, thus
rendering the previous local labels invalid beyond that point in the
assembly. An example of the use of local labels is shown below, where
the jump to label $@4 is made illegal by the intervening regular label
REALLAB .

$03 STA 4 ;LEGAL USE OF LOCAL LABEL
BNE $03
BNE $@4 ;ILLEGAL USE OF LOCAL LABEL
REALLAB .EQU $
$P4 .EQU $

152 APPLE PASCAL OPERATING SYSTEM

Operators

The following operators can be used in expressions processed by this
Assembler:

For unary operations:
+ plus
- minus
~ ones complement (not available on the Apple keyboard)

For binary operations:
+ plus
- minus
exclusive or
* multiplication
/ truncating division (DIV)
% remainder division (MOD)
| bit-wise OR (not available on the Apple keyboard)
& bit-wise AND
= equal (valid only in .IF)
<> not equal (valid only in .IF)

All operators have the same precedence.

Constants

All constants must start with an integer from O through 9.
For example, the hexadecimal constant FF must be written OFF

The default radix is Hexadecimal. Decimal constants must be
followed by a period (.) .

EXAMPLE: Hexadecimal: 13
Decimal: 19.

Expressions

Expressions are evaluated by the Assembler from left to right, and all
operators have the same precedence. To override the default, left-to-
right precedence, use angle brackets <like this> .

A relocatable label can be used in an address expression such as

LDA RLABEL+5 ;5 Legal expression with label

but only if-the expression ADDS or SUBTRACTS a constant value from the
address of the label. An expression such as

LDA RLABEL#*2 ;5 Illegal expression with label
will not be accepted by the Assembler unless you are assembling using

the .ABSOLUTE directive (discussed later in this chapter) and RLABEL has
previously been defined.

6502 ASSEMBLER 153

A relocatable label must not appear in an expression used to make an
absolute constant. A statement such as

LDA {#RLABEL+5 ;s Illegal use of label as absolute constant
will not be accepted by the Assembler.

The following portion of an assembled listing illustrates expression
syntax as used in the Assembler. The examples are not intended to form
an actual, useful program.

PAGE - 1 TEMP1 FILE:EXPRSYNTAX

2000 | .PROC TEMPl ; SHOWS EXPRESSION SYNTAX
Current memory available: 10088

P03 | ;3 CONSTANTS
P00 |

0oee| dooA CON1§ .EQU 1@.

0008| GPBF OTH@ .EQU @BFH

Po0@| GOF7 - ONE@ .EQU @F7H

P00 |

008 | ; EXAMPLE EXPRESSIONS
Poos |

P@dB| A5 @5 LDA 5

P@@2| A5 4D LDA 5+6%*7

@@ps| A5 4D LDA <5+6>*7

9006 | A5 @A LDA 7%6/4

PgP8| A5 @7 LDA 7*%<6/4>

PPPA| A5 @1 LDA 6%5

p@@gc| A5 @2 LDA 5+11%5

PPPE| A5 @7 LABEL LDA 5+<11%5>

P@1d| A5 48 LDA OTH@ ONE®

pp12| A5 B7 LDA OTHP&ONE®

pp14| AD GEPP LDA LABEL

P@17| AD @900 LDA LABEL-5

PP1A| AD 4@QQ LDA LABEL+<5*CON1¢>

LDA LABEL*2
ill-formed expression

E(dit,<space>,<esc> [Spacebar pressed here, to continue assembly.]
P@1D | LDA LABEL#*2

p@ID| A9 @5 LDA #5

PPLF| A9 1C LDA #5%<CON1¢ / 2> +3

LDA #<LABEL+5>
operand not absolute
E(dit,<space>,<esc> [Spacebar pressed here, to continue assembly.]

154 APPLE PASCAL OPERATING SYSTEM

@¢@21| A9 LDA #<LABEL+5>

LDA {#LABEL
operand not absolute
E(dit,<space>,<esc> [Spacebar pressed here, to continue assembly.]
p@g22| A9 LDA #LABEL
pg23|
p923| .END

LINKAGE TO ASSEMBLY ROUTINES

External assembly-language routines (.PROC’s and .FUNC’s) are separately
assembled and often stored in a diskette library file such as the boot
diskette’s SYSTEM.LIBRARY . A Pascal host program that uses such
external assembled routines must have those routines linked from

their library file(s) into the compiled host program’s codefile.

A Pascal host program declares that a routine is external in much

the same way as a Pascal routine is declared FORWARD. A standard
PROCEDURE or FUNCTION heading is provided, followed by the keyword
EXTERNAL. Calls to the external routine use standard Pascal syntax,

and the Compiler checks that each call to the external routine agrees in
type and number of parameters with the original EXTERNAL declaration for
that routine. It is the programmer’s responsibility to assure that the
assembly-language routine respects the Pascal EXTERNAL declaration.

The Linker checks only that the number of words of parameters agree
between the Pascal EXTERNAL declaration and the corresponding assembly-
language PROC or .FUNC declaration. For more information see this
manual’s chapter THE LINKER.

When the Pascal host program calls an external assembly-language
routine, passed parameters are pushed on the evaluation stack as they
are encountered in the host program’s calling statement. The first
parameter is pushed on the stack, highest byte first, then the second
parameter, and so on. Long integers and sets are always passed as the
maximum number of words allocated by the host program’s long integer or
set declaration, each word high byte first. A word indicating the
length in words is pushed last. Strings, records, arrays, and
VARiables are passed by address, pushing the high byte first, then low
byte. The Pascal host program’s EXTERNAL declaration may declare a
VARiable without type. This allows a parameter of indeterminate size to
be passed by address. When all the parameters have been passed, the host
program’s return address (the address to which the program must return
on completing the external routine) is pushed on the stack, high byte
first, then low byte.

6502 ASSEMBLER 155

In use, the assembly-language routine must save the return address,
and must push it on the stack again just before returning to the calling
program. The passed parameters are available on the stack in the

reverse order to the order in which they were originally pushed on the
stacke.

The conventions of the surrounding system concerning register use and
calling sequences must be respected by writers of assembly-language
routines. On the Apple, all registers are available, and zero-page
hexadecimal locations @ through 35 are available as temporary
variables. However, the Apple Pascal system also uses these locations
as temporaries, so you should not expect data to remain there from
one execution of a routine to the next. You can save variables in
non-zero page memory by using the .BYTE or .WORD directives in your
routine to reserve space.

For external assembly-language functions (.FUNC’s) only, two additional
conventions must be recognized:

1) At the function’s entry time, the Pascal host program pushes
two words (four bytes) of zeros on the evaluation stack after
any passed parameters are put on the stack and before the
return address is pushed on the stack.

2) At the function’s exit time, the .FUNC must push the function
result (a scalar, real, or pointer, maximum two words), high
byte first, just before pushing the return address on the stack.

For an example of an external assembly-language procedure, an external
assembly-language function, and a Pascal host program which calls these
routines, see the EXAMPLE earlier in this chapter. The EXAMPLE also
demonstrates the handling of the return address, passed parameters, and
returned function value in assembly-language routines. The external
routines in that example are manually Linked into the Pascal calling
program. For information about installing a routine into the system
library, see this manual’s chapter UTILITY PROGRAMS.

156 APPLE PASCAL OPERATING SYSTEM

THE ASSEMBLER DIRECTIVES

AN OVERVIEW

Assembler directives (also referred to as ''pseudo-ops') let you tell
the Assembler to do various functions other than provide directly

executable code. The following directives are common to all versions
of the UCSD Adaptable Assembler, including the Apple Pascal 6502

Assembler, but may differ from individual manufacturer’s standard
syntaxe

In the following descriptions of directives, square brackets [like this]
are metasymbols that denote optional elements which you may supply.
Angle brackets <like this> are meta-symbols that denote required
elements which you must supply. If an element type is not shown, it
cannot be used in that situation.

EXAMPLE:
[labell] .ASCII ""Ycharacter string>"

This notation indicates that you may supply a label, but it is
not necessary, and that between the required double quotes you
must supply the character string to be converted (not necessarily

the words '"character string'). The bracket metasymbols are not
to be be typed.

The following terms represent general concepts in the explanation of
each directive:

TERM: DEFINITION:

value Any numerical value, label, constant, or
expression.

valuelist A list of one or more values separated by
commas .

identifierlist A list of one or more identifiers separated
by commas.

expression Any legal expression as defined under SYNTAX

OF ASSEMBLY STATEMENTS.
identifier[:integer] A list of one or more identifier:integer pairs
list separated by commas. The colon-integer is
optional in each pair and the default is 1.

Small examples are included after each directive definition to show you
the specific syntax and form of that directive. The EXAMPLE assembly-

language routine earlier in this chapter is used to show the combined
use and detailed examples of directive operations.

6502 ASSEMBLER 1567

ROUTINE-DELIMITING DIRECTIVES

Every assembly must include at least one .PROC or .FUNC, and one .END ,
even in the case of stand-alone code which will not be linked into a
Pascal host (e.g., the interpreter). The most frequent use of the
Assembler, however, will be small routines intended to be linked with
a Pascal host. In this case, .PROCs and .FUNCs are used to identify
and delimit the assembly code to be accessed by a Pascal external
procedure or function. The .END appears at the end of the last

routine and serves as the final delimiter.

References to an assembly-language .PROC or .FUNC are made in the
Pascal host program by use of EXTERNAL declarations. At the time of
this declaration the actual parameter names must be given. For
example, if the Pascal host’s declaration is:

PROCEDURE FARKLE (X,Y:REAL);
EXTERNAL;

the associated declaration for the assembly-language .PROC would be

.PROC FARKLE,4

A .PROC, .FUNC, or any assembly routine should be inserted into the
SYSTEM.LIBRARY so that it can be referenced by the Linker and linked
into the Pascal host program at R(un time. An alternate method would
be to execute the Linker and tell it what files to link in. Either
method works. However, if the Pascal host is updated and the assembly
routines have not been installed in the SYSTEM.LIBRARY, the Linker
will have to be executed again after each host program update.
Therefore, we suggest that the routines be inserted into the
SYSTEM.LIBRARY to avoid this repetition. If the Linker is called
automatically, using the R(un command, it will automatically search
the SYSTEM.LIBRARY for the appropriate definition of the assembly
routine and link the two together.

The EXAMPLE earlier in this chapter shows the use of assembly-language
routines from a Pascal host program and demonstrates the manual

linking process. More information on linking appears in this manual’s
chapter THE LINKER. For information on using the system librarian to
install a routine into SYSTEM.LIBRARY , see this manual’s chapter

UTILITY PROGRAMS.

.PROC Identifies a procedure that returns no value. A .PROC is
ended by the occurrence of a new .PROC , .FUNC , or .END .
FORM: .PROC <identifier>[,expression]
[expression] indicates the number of words
of parameters expected by this routine.

The default is O.

EXAMPLE: «PROC DLDRIVE, 2

158 APPLE PASCAL OPERATING SYSTEM

-FUNC

«END

Identifies a function that returns a value. Two words of

space to be used for the function value will be placed on
the stack after any parameters. A .FUNC is ended by the
occurrence of a new .PROC , .FUNC , or .END .

FORM: «FUNC <identifier>[,expression]

[expression] indicates the number of words
of parameters expected by this routine.
The default is O.

EXAMPLE: .FUNC RANDOM, 4

Used to denote the physical end of an assembly.
FORM: «END

EXAMPLE: .END

LABEL DEFINITIONS AND
SPACE ALLOCATION DIRECTIVES

«.ASCII

Converts character values to ASCII equivalent byte
constants and places the equivalents into the code stream.

FORM: [label] .ASCII '"<character string>"

where <character string> is any string of
printable ASCII characters, including a space.
The length of the string must be less than 80
characters. The double quotes are used as
delimiters for the characters to be converted.
If a double quote is desired in the string, it
must be specifically inserted using a .BYTE .

EXAMPLE: +ASCII "HELLO"

for the insertion of AB"CD the code must be
constructed as:

.ASCII "AR™
.BYTE 22 ; An ASCIT "
.ASCII "cp"

Note: The 22 is the hexadecimal ASCII code for a double quote.

6502 ASSEMBLER 159

«BYTE Allocates a byte of space into the code stream for each

value listed. Each value actually stored by the routine

must have a value between -128 and +255. If the value is
outside of this range an error will be flagged. Assigns

the associated label, if any, to the address at which the
byte was stored.

FORM: [label] .BYTE [valuelist]
the default for no stated value is (.

EXAMPLE: TEMP .BYTE 4

the associated output would be: @4

«BLOCK Allocates a block of space into the code stream for each value

listed. Amount allocated is in bytes. Associates the
label (if present) with the starting address of the block

allocated.

FORM: [label] .BLOCK <length>[,value]

<length> is the the number of bytes to hold the <value>
specified. The default for no stated value is (.

EXAMPLE: TEMP .BLOCK 4,6

the associated output would be:

g6
@6 (four bytes with the value @6)
p6
g6
+«WORD Allocates a word of space in the code stream for each value

160

in the valuelist. Associates the declaration label with
the word space allocation.

FORM: [label] .WORD <valuelist>
EXAMPLE: TEMP .WORD §,2,4,...
the associated output would be:
0?00
99g2

@004 (words with these values in them)

APPLE PASCAL OPERATING SYSTEM

EXAMPLE: Al «WORD A2

A2 .EQU $ s $ denotes LC value
<WORD 5.
The statement A2 .EQU § assigns the current

value of the location counter (LC) to the label A2 .
If the value of the location counter is 5@ at the
.EQU , the associated output would be:

P@58 (assignment due to the value of L2)

.

00@5 (assignment due to the .WORD 5)

.EQU Assigns a value to a label. Labels may be equated to an
expression containing labels and/or absolutes. One must
define a label before it is used unless it will simply be
equated to another label. A local label may not appear
on the left-hand side of an equate (.EQU).

FORM: <label> .EQU <value>
EXAMPLE: BASE .EQU R6
.ORG Takes the operand of .ORG as the offset, relative to the

start of the assembly file, where the next word or byte of
code is to go. Words or bytes of zeros are produced to get
the current location counter (LC) to the correct value.

FORM: -ORG <value>
EXAMPLE: .ORG @gDgop

«ABSOLUTE If a .ABSOLUTE occurs before the first .PROC then all
.ORG’s are interpreted as absolute memory locations. The
user must take responsibility for the correct loading of
the produced code file. The use of .ABSOLUTE has the
effect of cancelling the generation of relocation
information. Further, any defined (i.e., non forward-
referenced) labels may be treated as absolute numbers.
Thus such labels may be multiplied and divided, etc.
+ABSOLUTE must occur before the first .PROC and is set for
the entire assembly.

FORM: +-ABSOLUTE

EXAMPLE: «ABSOLUTE

6502 ASSEMBLER 161

« INTERP Interpreter relative locations are specified by the use of
« INTERP in an expression. Further labels may defined as
interpreter relative in the manner shown in the example.
The rules regarding the use of such labels are the same as
for any other specially defined labels (e.g., .PUBLIC and
.PRIVATE). Locations whose values depend on interpreter
relative labels or expressions are listed in a fourth
relocation list at the end of the assembly procedure.

EXAMPLE: STUFF .EQU « INTERP+25

Certain interpreter entry points may be useful, using an
instruction such as

LDA @. INTERP+n
with these values of n:

n=0@ Address of the execution error routine; displays
error message using the error number in the A register.

n=2 Address of the BIDS jump table; handles input and output.

n=4 Address of SYSCOM; system’s communications area of the
P-machine.

MACRO FACILITY DIRECTIVES

A macro is a named section of text that can be defined once and
repeated in other places simply by using its name. The text of the
macro may be parameterized, so that each invocation results in a

different version of the macro contents. The entire macro definition
may precede the first .PROC or -FUNC of the assembly file.

At the invocation point, the macro name is followed by a list of
parameters, each terminated by a comma (except for the last one, which
is terminated by end of line or the comment indication (;). The text
of the macro definition, modified by substituting the invocation
parameters, is inserted (conceptually speaking) by the Assembler at the
invocation point. Wherever 7n (where n is a single decimal digit
greater that zevro) occurs in the macro definition, the text of the n-th
invocation parameter is substituted. Leading and trailing blanks are
stripped from the parameter before the substitution. If the macro
definition includes a reference to a parameter not provided in a
particular invocation (too few parameters or no parameter before a
terminating comma), a null string is substituted.

A macro definition may not contain another macro definition. A
definition can certainly, however, include macro invocations. This
"nesting" of macro invocations is limited to five levels deep.

The expanded macro is always included in the listing file (unless

-NOMACROLIST is in effect at the point of invocation). Macro
expansion text is flagged, in the listing, by a # just left of each

162 APPLE PASCAL OPERATING SYSTEM

expanded line. Comments occurring in the macro definition are not
repeated in the expansion.

«MACRO Indicates the start of a macro definition and gives it an
identifier.

« ENDM Indicates the end point of a macro definition.

FORM: «MACRO <identifier>

.
.

;5 (macro body)

- ENDM

EXAMPLE: «MACRO HELP
STA %1 3 < comment >
LDA %2 3 < comment >
- ENDM

The assembly listing beginning at the point where this macro
was invoked may look like this:

HELP ALPHA,BETA
i STA ALPHA
it LDA BETA

The statement HELP calls the defined macro and sends it two
parameters, ALPHA and BETA. These parameters are in turn
used in forming the macro expansion (flagged in the listing
by # signs) that follows the invoking statement. In the
expansion, the first calling-statement parameter (variable
ALPHA) is substituted for the definition’s identifier %1 ,
and the second parameter (variable BETA) is substituted for
the identifier %2 .

The following portion of an assembled listing illustrates the
syntax used when defining and invoking macros. The procedure
itself is not meant to be an actual, useful program.

PAGE - 1 TEMP2 FILE:MACROCALL

000 | .PROC TEMP2 ; SHOWS SYNTAX OF MACRO CALLS
Current memory available: 1¢¢88

2000 | ; CONSTANTS

P00 |

pp00| GPgA CON1§ .EQU 14.

P000| G@BF OTHf .EQU @BFH

P000| @0F7 ONE® .EQU @F7H

PO00 |

o000 | 3 MACRO DEFINITIONS
P03 |

0000 | «MACRO M2

0000 | CLC

2009 | LDA PREDEFL+%1

6502 ASSEMBLER 163

0083 | . ENDM

008 |
o008 | «MACRO TESTM
0000 | JMP %1
0008 | LDA #5+%2
o0 | M2 %2 ; MACRO CALL WITHIN A MACRO DEF’N
900 | LDA %3
P9 | LDA %4
o080 | LDA %5
o0 | JMP %6
0003 | +ENDM
Pe0 |
gggg{ A5 @5 PREDEFL LDA 5 ; A PRE-DEFINED LABEL

2
g902 | s MACRO CALL WITH ALL PARAMETERS
peo2 | ; & NO LEADING OR TRAILING SPACES
peg2]
poe2 | TESTM PREDEFL,<5*CON1¢+6>, #55, #6, 1,LABEL2
9982 4C POPR # JMP PREDEFL
#@@5| A9 3D # LDA #5+<5*CON1¢+6>
POG7 | # M2 <5*CON1@+6>
Pe@d7| 18 # CLC
P¢@8| AD 3800 # LDA PREDEFL+<5%CON1@+6>
P@gB| A9 55 # LDA #55
PP@D | A9 @6 # LDA {#6
PPGF| A5 @1 # LDA 1
PP11| 4C *%*% # JMP LABEL2
PP14]
@14] M2 5 ; SIMPLE MACRO CALL
pP14] 18 # CLC
#¢15| AD @5¢¢ # LDA PREDEFL45
PP18|
PP18| s MACRO CALL WITH NUL PARAMETERS
P@18| s AND LEADING & TRAILING SPACES
Pp18|
P18 | TESTM ,CON1#,, XX ,@FPH, PREDEFL

JMP

not enough operands
E(dit,<space>,<esc> [Spacebar pressed here, to continue assembly.]
pg18] # JMP
pg18| A9 OF # LDA #5+CON1@
P@1A| # M2 CON1g@
P@1A| 18 # CLC
P@1B| AD @GAQ@ # LDA PREDEFL+CON1¢

164 APPLE PASCAL OPERATING SYSTEM

LDA
i1l formed operand

E(dit,<space>,<esc> [Spacebar pressed here, to continue assembly.]
PO1E | # LDA

PPALE| AD **%% # LDA XX

p@21| A5 F@ # LDA @F@H

PP23| 4C PPPP # JMP PREDEFL

p026|

?926| .END

CONDITIONAL ASSEMBLY DIRECTIVES

Conditionals are used to selectively exclude or include sectiomns of
code at assembly time. When the Assembler encounters a .IF directive,
it evaluates the associated expression. In the simplest case, if the
expression is false, the Assembler simply discards the text until a
.ENDC is reached. If there is a .ELSE directive between the .IF and
«ENDC directives, the text before the .ELSE is selected if the
expression is true, and the text after the .ELSE if the condition is
false. The unassembled part of the conditional will not be included
in any listing. Conditionals may be nested.

The conditional expression takes one of two forms. The first is the
normal arithmetic/logical expression used elsewhere in the Assembler.
This type of expression is considered false if it evaluates to zero;
true otherwise. The second form of conditional expression is
comparison for equality (indicated by =) or inequality (indicated
by <>). One may compare strings, characters, or arithmetic/logical
expressions.

.IF Identifies the beginning of the conditional.
« ENDC Identifies the end of a conditional .IF
. ELSE Identifies the alternate to the .IF If the conditional

expression is equal to @ then the else portion is used.

FORM: [label] .IF <expression>

. ;3 (only if there is an else)
«ENDC

where the expression is the conditional expression to be met.

6502 ASSEMBLER 165

EXAMPLE:
.IF LABEL1-LABEL2 sArithmetic expression.

. s This text assembled
. s only if subtraction
. s result is non-zero

JIF "Z1" ="STUFF" Comparison expression.
This text assembled
if subtraction above
was true and if text
of first parameter

(assume we’re in macro)
is equal to "STUFF".

Ve we we we we we we we

«ENDC Terminates nested cond.

.ELSE
e s This text assembled if
. 3 subtraction result was
. s Zeroe.

.ENDC Terminates outer level

we we

of conditional.

HOST-COMMUNICATION DIRECTIVES

The directives .CONST , .PUBLIC , and .PRIVATE allow the sharing of
information and data space between an assembly routine and the host
program which uses that routine. These external references must
eventually be resolved by the Linker. Refer to this manual’s chapter
THE LINKER for further details.

«CONST

«PUBLIC

Allows globally declared constants in the host program to be
accessed by the assembly routine. .CONST can only be used in
a program to replace 16-bit relocatable objects.

FORM: «CONST <identifierlist>

EXAMPLE: (see example after .PRIVATE)

Allows a variable declared in the global data segment of
the host program to be used by both the assembly-language
routine and the host program.

FORM: «PUBLIC <identifierlist>

EXAMPLE: (see example after .PRIVATE)

166 APPLE PASCAL OPERATING SYSTEM

«PRIVATE

Allows variables of the assembly routine to be stored in

the host program’s global data segment and yet be inaccessible
to the host program. These variables retain their values for
the entire execution of the program.

FORM: «PRIVATE <identifier[:integer] list>

The integer is used to communicate the number of words to
be allocated to the identifier. The default is one word.

EXAMPLE: (for .CONST, .PRIVATE, and .PUBLIC)
Given the following Pascal host program:

PROGRAM EXAMPLE;
CONST SETSIZE=5@; LENGTH=8(;

VAR 1,J,F,HOLD,COUNTER,LDC:INTEGER;
LST1:ARRAY [#..9] OF CHAR;

BEGIN

END.
and the following section of an assembly routine:

+CONST LENGTH
+PRIVATE PRT,LST2:9
« PUBLIC LDC,I,J

This will allow the constant LENGTH to be used in the assembly
routine almost as if the line LENGTH .EQU 8@. had been
written. (Recall the limitation mentioned above for using
.CONST identifiers.) The variables LDC,I and J are to

be used by both the Pascal host and the assembly routine,
while the variables PRT and LST2 are to be used only by the
assembly routine. Further, the LST2:9 causes the variable
LST2 to correspond with the beginning of a nine-word block

of space in the Pascal host’s global data segment.

EXTERNAL REFERENCE DIRECTIVES

Separate routines may share data structures and subroutines by linkage
from one assembly routine to another assembly routine. This is made

possible through the use of .DEF and .REF . These directives cause
the Assembler to generate link information that allows two separately

6502 ASSEMBLER 167

assembled routines to be linked together. By using .DEF and .REF ,
one assembly routine may call subroutines found in another assembly
routine. One routine placed in a library file such as the boot
diskette’s SYSTEM.LIBRARY can contain a large number of frequently
used subroutines which are all available to other routines.

The use of .DEF and .REF is similar to that of .PUBLIC . .DEFs and
-REFs associate labels between two assembly routines rather than
between an assembly routine and a Pascal host program. Just as with
«PRIVATE and .PUBLIC , these external references must eventually be
resolved by the Linker. If such resolution cannot be accomplished,
the Linker will indicate the offending label. Naturally, the
Assembler cannot be expected to flag these errors, since it has no

knowledge of other assemblies.

The host assembly routine must be linked to its external assembly
subroutines BEFORE that host assembly routine can be linked into a
Pascal host program or UNIT as an EXTERNAL procedure or function.

.DEF Identifies a label that is defined in the current routine
as being available for use (by means of .REF) from .PROCs
or .FUNCs in other assembly-language routines.

Note: The .PROC and the .FUNC directives also generate a .DEF
with the same name. This allows a host assembly routine
to call external .PROCs and .FUNCs if the host assembly
routine has defined them in a .REF .

FORM: .DEF <identifierlist>

EXAMPLE: The following sketched-out routine declares a .DEF
for the labels DOIT and THINK . The subroutines
bearing the labels DOIT and THINK may then be used
by other assembly routines (see example for .REF).

.PROC FARKLE, 3
.DEF DOIT,THINK

BNE THINK

DOIT LDA

RTS

THINK LDY

RTS

-END

168 APPLE PASCAL OPERATING SYSTEM

«REF Identifies a label used in the current routine which refers

to a label declared as available (by means of .DEF) in
another routine’s .PROC or .FUNC . During the linking

process, corresponding .DEFs and .REFs are matched.

Note: The .PROC and the .FUNC directives also generate a .DEF
with the same name. This allows a host assembly

routine to call external .PROCs and .FUNCs if the host
assembly routine has defined them in a .REF .

FORM: «REF <identifierlist>

EXAMPLE: The following sketched-out assembly-language

routine declares a .REF for the external label
DOIT (DOIT was declared available for such
reference by the .DEF in the previous example).
It then uses that label just as if it referred to
a labelled subroutine within the routine itself.

.PROC SAMPLE
+REF DOIT

JSR DOIT

«END

Note: The assembly routine containing .PROC FARKLE must be
linked from its library codefile into the host assembly
routine containing .PROC SAMPLE before SAMPLE can be linked
in as an EXTERNAL procedure to a Pascal UNIT or program.

LISTING CONTROL DIRECTIVES

The listing control directives determine what is sent to the output
file that is specified at assembly time, in response to the prompt

OUTPUT FILE FOR ASSEMBLED LISTING: (<CR> FOR NONE)
If no listing output file is specified (by just pressing the RETURN

key), then all listing control directives are simply ignored as
irrelevente.

6502 ASSEMBLER 169

+LIST
and
«NOLIST

«MACROLIST
and

Allows selective listing of assembly routines. Listing
goes to the specified output file when a .LIST is
encountered. The .NOLIST is used to turn off the .LIST
option. Listing may be turned on and off repeatedly within
an assembly. .LIST is the default state.

FORM: «LIST or «NOLIST

Allows selective listing of macro expansions. In general
an assembled listing will contain the textual expansion of

«NOMACROLIST a macro if the .MACROLIST option was in effect when the

«PATCHLIST
and

macro was defined. On the other hand, an assembled
listing will not contain the textual expansion of a macro
if the .NOMACROLIST option was in effect when the macro was
defined. These options may be used repeatedly throughout
an assembly, to list the expansions of certain macros
selectively.

Macro expansion text is flagged in the listing by a # to
the left of each expanded line. Comments occurring in the
macro definition are not repeated in the expansion. The
assembled listing of the EXAMPLE earlier in this chapter
shows the macro POP defined on PAGE-§ , and listings of the
macro expansion appear on PAGE-1 and PAGE-4 .

When assembling nested macro invocations, listing of
textual expansion continues until the Assembler encounters
the first macro defined with .NOMACROLIST in effect.
Listing does not resume until that macro’s invocation is
complete, regardless of the listing state of the macros
invoked by the non-listing macro.

The .LIST and .NOLIST options take precedence over the
«MACROLIST and .NOMACROLIST options. The Assembler
defaults to the .MACROLIST state.

FORM: «MACROLIST or «NOMACROLIST

EXAMPLE: «NOMACROLIST

Allow control over listing of back-patches made to the code

file. These options may be used repeatedly throughout an

«NOPATCHLIST assembly.

170 APPLE

When an undefined label is encountered, the assembled
listing shows one * for each hexadecimal digit to be
filled in later. For example:

PP19| 1¢** BPL DONE

PASCAL OPERATING SYSTEM

«PAGE

«TITLE

When the forward reference is resolved, the back-patch is
listed in the form

ge19* ¢gp
@@1F| A9 (¢ DONE LDA #@

where the number to the left of the asterisk is the address
of the patched location and the number to the right of the
asterisk is that location’s new value. See PAGE-1 of the
assembled listing of the EXAMPLE, earlier in this chapter,
for an illustration of back-patch listing.

«PATCHLIST is the default state.
FORM: «PATCHLIST or «NOPATCHLIST

EXAMPLE: «NOPATCHLIST

Allows the programmer to explicitly ask for a top of form
page break in the listing.

FORM: +PAGE

EXAMPLE: «PAGE

Allows the titling of each page if desired. At the start of
each procedure the title is set to blanks and must be reset if
title is desired. The title is only cleared at the start

of the file. In the EXAMPLE assembly listing earlier in

this chapter, the title SYMBOLTABLE DUMP was not set by a
.TITLE directive. That heading is always used on pages
containing symboltable dumps. Upon assembling a further
procedure the heading printed returns to what it was before
the symboltable dump.

FORM: «TITLE "<title>"

where <title> is any string of printable ASCII characters,
including a space. The length of the string must be less
than 8§ characters. The double quotes are used as
delimiters for the string, so a title may not include the
double quote character.

EXAMPLE: .TITLE "QRC12 INTERPRETER"

6502 ASSEMBLER 171

FILE DIRECTIVE

- INCLUDE Causes the indicated source file to be included at that point.
FORM: « INCLUDE <filename>

where the filename specifies an assembly-
language textfile to be included.

If you don“t add the suffix .TEXT the system will add it for
you. The last character of the filename must be the

last non-space character on that line (no comment may follow
on the same line).

CORRECT EXAMPLE: «INCLUDE SHORTSTART.TEXT

CORRECT EXAMPLE: «INCLUDE SHORTSTART.TEXT
5 CALLS STARTER
INCORRECT EXAMPLE: .INCLUDE SHORTSTART.TEXT ; CALLS STARTER

: 3

The Include-file’s text is treated by the assembler just as
if you had typed that text into the original file at the
position of the .INCLUDE directive. For example, if the
included file contains a .END , the assembly is terminated
at that point.

Note: For a list of Assembler error messages, see the appendix at the
end of this manual.

ASSEMBLER DIRECTIVE SUMMARY

METASYMBOL NOTATION

Square brackets [like this] surround optional elements which you may
supply. Angle brackets <like this> surround required elements which
you must supply. The metasymbol brackets and the brief definition at
the end of each line are not to be typed.

ROUTINE DELIMITING DIRECTIVES

«PROC <identifier>[,expression] Begins a procedure.
«.FUNC <identifier>[,expression] Begins a function.
«END Ends entire assembly.

172 APPLE PASCAL OPERATING SYSTEM

LABEL DEFINITIONS AND
SPACE-ALLOCATION DIRECTIVES

[1label] WASCII ""<character string>" Inserts ASCII of chars.
[label] .BYTE [valuelist] Inserts byte of wvalue.

[label] +BLOCK <length>[,value] Inserts block of value.
[label] -WORD <valuelist> Inserts word of value.

<label> .EQU <value> Assigns value to label.
«ORG <value> Next byte at start of

assembly file + value.

+«ABSOLUTE Precedes 1lst .PROC; all

.ORGs put next byte at
abs. location = value.
« INTERP lst loc. of interpreter,
in relative-location
expressions.

MACRO FACILITY DIRECTIVES

+«MACRO <identifier> Begins a macro definition.
« ENDM Ends a macro definition.

CONDITIONAL ASSEMBLY DIRECTIVES

[label] .IF <expression> Begins condit’l assembly.
If true, assembles next
[«ELSE] text [up to .ELSE];

if false, only text
after a .ELSE .
. ENDC Ends condit’l assembly.

HOST-COMMUNICATION DIRECTIVES

. CONST <identifierlist> Takes value from global
const in Pascal host.
«PUBLIC <identifierlist> Uses a global variable

from the Pascal host.
«PRIVATE <identifier[:integer] list> Variable not accessible

to the Pascal host.

Default :1 word/ident.

EXTERNAL COMMUNICATION DIRECTIVES

.DEF <identifierlist> Makes label available
to other routines.
«REF <identifierlist> Label refers to another

routine’s .DEF’d label.

6502 ASSEMBLER 173

LISTING CONTROL DIRECTIVES

.LIST and .NOLIST Turns assembly listing
on and off.
«MACROLIST and .NOMACROLIST Turns listing of macro
expansions on and off.
«PATCHLIST and .NOPATCHLIST Turns listing of back-
patches on and off.
« PAGE Puts page-feed in listing.
.TITLE "<title>" Titles each page of cur-

rent .PROC or .FUNC .

FILE DIRECTIVE

«INCLUDE <filename> Includes named text file
in the assembly.

Note: Additional information can be found in this manual’s chapters
THE LINKER (Linker information), UTILITY PROGRAMS (installing routines
in SYSTEM.LIBRARY), and in the TABLES appendix (Assembler error messages).

174 APPLE PASCAL OPERATING SYSTEM

THE LINKER

6502 ASSEMBLER 175

INTRODUCTION

The Linker is invoked automatically if needed when you type R for R(un,
or is invoked explicitly by typing L for L(ink, when at the outermost
Command level. The Apple Pascal Linker lets you combine code files,
which may be compiled P-code or assembled machine code, into the system
workfile or another specified codefile. This provides a way to
incorporate certain useful routines into your programs without having to
rewrite or even recompile or re-assemble these routines. For example,
you might wish to use a fast assembly-language routine for some '"real-

time" application. This routine could be assembled separately, stored
in a library, and eventually accessed via the Linker.

To link in routines (either procedures or functions), a Pascal calling
program declares those routines to be EXTERNAL . This notifies the
Compiler that the routines may be called, but are not provided yet.
The Compiler will inform the system that linking is required before
execution. The EXAMPLE in this manual’s chapter THE 65@¢2 ASSEMBLER
shows an assembly-language procedure and function, a Pascal calling
program, and the linking process needed to combine the two portions.
For more details about the Linker information stored with codefiles,
see this manual’s appendix, FILE FORMATS.

The Linker is also used to link in certain kinds of Pascal UNITs. A
UNIT is a group of related routines which will be used together to
perform a common task. Any Pascal files which reference UNITs or
EXTERNAL routines, and which have not yet been linked, may be compiled
and saved but will need to be linked before they can be executed.

The UNITs that are provided with the Apple Pascal language, such as
TURTLEGRAPHICS and APPLESTUFF , are special INTRINSIC UNITs, which are
""prelinked" and are USEd directly from SYSTEM.LIBRARY without linking.

For more information on Pascal UNITs, see the Apple Pascal Language

Reference Manual. For information on linking from one assembly
routine to another, see this manual’s chapter THE 652 ASSEMBLER.

DISKFILES NEEDED

The following files allow you to use the Linker explicitly:

SYSTEM.LINKER (any diskette, any drive; required)
Host codefile needing (any diskette, any drive; default
external routines is boot diskette’s code workfile
SYSTEM.WRK.CODE, any drive)
Library codefiles holding (any diskettes, any drives; default
external routines is boot diskette’s library file

SYSTEM.LIBRARY, any drive)

176 APPLE PASCAL OPERATING SYSTEM

The following diskfiles allow you to invoke the Linker automatically,
using the R(un command:

Host program needing (any diskette, any drive; default
external routines is boot diskette’s workfile
SYSTEM.WRK.CODE or .TEXT, any drive)

SYSTEM.COMPILER (any diskette, any drive; required
if host program is a textfile)
SYSTEM.EDITOR (any diskette, any drive; optional;
to fix errors found by Compiler)
SYSTEM.SYNTAX (boot diskette, any drive; optional
messages given on entering Editor)
SYSTEM.LINKER (any diskette, any drive; required)
SYSTEM.LIBRARY (boot diskette, any drive; required

to contain the needed routines)

SYSTEM.PASCAL (boot diskette, boot drive; required
between Compiling, Linking and
eXecuting steps)

SYSTEM.LIBRARY (boot diskette, boot drive; required
if program uses long integers, does
file I/0 using real numbers or SEEK,
or USES Intrinsic Units)

SYSTEM.CHARSET (any diskette, any drive; required
only if program uses WSTRING or
WCHAR from TURTLEGRAPHICS)

Any time the Linker is invoked, SYSTEM.LINKER must be available on any
diskette in any disk drive. This file is normally found on diskette
APPLE2: . When the LINKER prompt line appears, SYSTEM.LINKER is no longer
necessary, and the diskette containing SYSTEM.LINKER may be removed from
the system to make room for other diskettes.

If you attempt to R(un a text workfile, first the Compiler is invoked,
which requires that the file SYSTEM.COMPILER be available in any
diskette in any disk drive. SYSTEM.COMPILER is normally found on
APPLE2: and also on APPLE@: . Then, following successful compilation,
the Linker is called (if linking is needed), using SYSTEM.LINKER .

The Linker automatically tries to find any needed UNITs or EXTERNAL
routines by looking in the file SYSTEM.LIBRARY , which must be on the
boot diskette (APPLEl: or APPLE@:) but may be in any disk drive.
Finally, following successful compilation and linking the program is
executed. If SYSTEM.LIBRARY is required for execution, it must be in
the boot drive on the boot diskette.

Note: The system returns to the Command level for an instant between

any two portions of the R(un sequence. Therefore, you must normally
leave the boot diskette in the boot drive during the entire sequence.

LINKER 177

If the workfile has already been compiled into its code version, R(un
will not call the Compiler, and SYSTEM.COMPILER is not needed. If you
invoke the Linker by typing L , you can link routines that are found
in any available disk file. In that case, the file SYSTEM.LIBRARY may
not be needed.

Multi-drive note: On multiple-drive systems, diskette APPLEl: is
normally your boot diskette. If APPLEl: is in the boot drive, and
APPLE2: is in a non-boot drive, your system will have available all
the diskfiles it needs to E(dit, C(ompile or A(ssemble, L(ink, X(ecute
and R(un.

Two-drive note: To L(ink when the host and library files are not
already on APPLEl: or APPLE2: , you can use the Filer to T(ransfer

the needed files onto APPLE2: before linking. Alternatively, if the
COMMAND prompt line is showing, if L(inking is your only task, and if
all your host and library files are on another diskette such as
MYDISK: , you could put MYDISK: in the boot drive and APPLE2: in the
non-boot drive. When the linking process is complete, the system will
return to the Command level. Since your boot diskette is not the boot
drive, you will be prompted to put it in.

One~-drive note: To R(un a text workfile that needs linking to an
external routine, you will have to use the Filer to T(ransfer
SYSTEM.LINKER from APPLE2: onto your boot diskette APPLE@: . With
this version of APPLE@: in the disk drive, your system will have
available all the diskfiles it needs to E(dit, C(ompile or A(ssemble,
L(ink, X(ecute and Run. Unfortunately, this will leave only 17 blocks
free on APPLE@: for your text and code workfiles, etc. To make more
room on your boot diskette, you may wish to remove the files
SYSTEM.SYNTAX (use the compiler error messages shown in the Apple
Pascal Language Reference Manual, instead), SYSTEM.CHARSET (only
needed if your program uses WCHAR or WSTRING from TURTLEGRAPHICS), and
even SYSTEM.FILER (can be read in from any diskette, as long as that
diskette is in the drive when you invoke the Filer).

USING THE LINKER

There are two different ways to invoke the Linker: by typing L for
L(ink or by typing R for R(un, both from the outermost Command level
of Pascal.

If the Pascal program in the current text workfile contains EXTERNAL
declarations, or USES UNITs which are not INTRINSIC UNITs, typing R
for R(un from the outermost Command level automatically invokes the
Linker after the Compiler. The Linker automatically uses as its host
file the code file where the Compiler saved the code that resulted
from a successful compilation (even if that file is not the code

178 APPLE PASCAL OPERATING SYSTEM

workfile SYSTEM.WRK.CODE). When invoked by the R(un command, the
Linker automatically searches the file SYSTEM.LIBRARY, which must be
on the boot diskette, for the routines or UNITs specified, and links
them into the workfile. If the UNIT or EXTERNALly declared routine is
not present in SYSTEM.LIBRARY, the Linker will respond with an
appropriate message:

UNIT,
PROC,
FUNC,
GLOBAL,

or PUBLIC <identifier> UNDEFINED
TYPE <SP>(CONTINUE), <ESC>(TERMINATE)

You can press the spacebar, and the Linker will proceed, trying to
link whatever routines or UNITs are available in SYSTEM.LIBRARY .
Later, you can use the Linker explicitly to link in the remaining
routines or UNITs. If the file SYSTEM.LIBRARY is not available on the
boot diskette, this message appears:

NO FILE *SYSTEM.LIBRARY
TYPE <SP>(CONTINUE), <ESC>(TERMINATE)

If the Linker fails to find a file with the exact filename specified
at any point and that filename does not end in .CODE or in .LIBRARY,
it then adds the suffix .CODE to the filename, and tries again. In
this case, its own internal specification told it to look for
*SYSTEM.LIBRARY . After this message, the Linker does not allow you
to specify a different library file for your routine or UNIT, so there
is little point in continuing. Just press the ESC key to go back to
Command level.

The Linker may also be invoked explicitly, and, in fact, must be
invoked explicitly in cases where

(1) the host file into which UNITs or EXTERNAL routines are to
be linked is not the code file resulting from a successful
compilation initiated by the R(un command, or

(2) the UNITs or EXTERNAL routines to be linked reside in
files other than the boot diskette’s SYSTEM.LIBRARY .

In order to invoke the Linker explicitly, you type L for L(ink at the
Command level and receive the prompt:

LINKING...

LINKER II.1 [A4]
HOST FILE?

LINKER 179

The hostfile is usually the Pascal program codefile into which the
external routines or UNITs are to be linked. (In linking between two
assembly routines, the hostfile is the routine which used .REF to
declare certain labels as external.)

If you just press the RETURN key in response to the prompt, the Linker
uses the boot diskette’s workfile SYSTEM.WRK.CODE as the hostfile. If
the R(un command has just caused the Compiler to save a compiled
codefile, that file is taken as the hostfile even if it is not
SYSTEM.WRK.CODE .« You may also respond by typing the file
specification of any other host codefile. If the Linker cannot find a

file with the exact filename you typed and that filename does not end
in .CODE or in .LIBRARY, it adds the suffix .CODE to the filename and

tries again. For this reason, if you respond by typing the non-
existent filename

MYDISK:MYFILE.CODE
the Linker returns the message
NO FILE MYDISK:MYFILE.CODE

The Linker always displays the full name of the last file it tried to
open.

The Linker then asks for the name of the first library file in which

the needed Pascal UNITs or EXTERNAL routines (or .DEF assembly
subroutines) are to be found:

LIB FILE?

You should respond by typing the file specification of any codefile
containing a Pascal UNIT or EXTERNAL routine that you want linked into
the Pascal host program. (In linking between two assembly routines,
the library file contains the routine which used .DEF to declare
certain labels as available for external use by the host routine.)

The Linker looks first for the exact filename that you type, and then
(if the search was unsuccessful) adds the suffix .CODE and looks

again. In any case, it always displays the name of the file actually
opened. When the specified file has been found, you are given the same
prompt again, asking for the filename of another file containing a
needed UNIT or routine. Up to eight library files may be referenced in
one linking operation. Typing * (and then pressing the RETURN key)
in response to a request for a libfile name will cause the Linker to
reference SYSTEM.LIBRARY on the boot diskette.

EXAMPLE:

LIB FILE? *
OPENING SYSTEM.LIBRARY

180 APPLE PASCAL OPERATING SYSTEM

For information on LIBRARIES and the LIBRARIAN see this manual’s
chapter UTILITY PROGRAMS. If a host codefile or a library codefile is
not of an appropriate type, the Apple will display an error message.
These files must contain either compiled Pascal P-code or assembled
6502 assembly code.

When all relevant library files have been specified, answer the next

LIB FILE? prompt by just pressing the RETURN key to proceed. The
Linker will now prompt with:

MAP FILE?

If you respond by typing a file specification, the Linker writes a
"mapfile'" to the file that you have just specified. Note that the
suffix «TEXT is appended to the specified filename unless it already
ends in .TEXT or a period (.) is the last letter of the filename.
The mapfile contains relevant Linker information regarding the linking
process. Responding to this prompt by simply pressing the RETURN key
causes no mapfile to be written. This is the response you will
normally use. The mapfile is a diagnostic and system programming tool,
and is not required for most uses of the Linker.

Note: The output codefile (see below) is opened with the [@] filesize
and the mapfile is opened AFTER opening the output codefile. If your
system tries to put both files on the same diskette, it may be unable
to open the mapfile since the output codefile may then occupy all the
remaining diskette space. This does not stop the linking process, but
you will have no mapfile. You can solve this problem by sending the
mapfile to another diskette, to CONSOLE: , etc.

The Linker now reads all segments required to start the linking
process. Then you are prompted to type a file specification for saving
the linked code output:

OUTPUT FILE?

(this will often be the same filename as that of the host file, but
you may not use the § same-name option offered by the Compiler and
Assembler). It is not necessary to add the suffix .CODE ; that suffix
is automatically supplied if you don’t type it. After the output file
specification has been typed, press the RETURN key and linking will
commence. Responding with no filename (by pressing the RETURN key
only) causes the linked output to be saved in the boot diskette’s
workfile, SYSTEM.WRK.CODE .

Note: unless you specify a different filesize, the output codefile is
opened with the [@] filesize.

During the linking proces., the Linker will report on all segments
being linked and on all external routines being copied into the output
codefile. The linking process will be stopped if any required
segments or routines are missing or undefined. You will be told what
was missing, by messages as described at the beginning of this
section, and allowed to terminate or continue the linking process.

LINKER 181

182 Downloaded from www.Apple20nline.com

CHAPTER 8

184

184
185
186
187
188

193
193
194
194
195
197
199
199
200
201
203
204
204
207
208
210
211
211
214
214
215
215
216
216
217
218
218
218
219
219
220
220
221

INTRODUCTION
FORMATTING NEW DISKETITES
Diskfiles Needed
Using the Utility
THE SYSTEM LIBRARIAN
Diskfiles Needed
Example: Installing a UNIT

or Routine into a Library File
Using the New Library
Shorthand Filenames
LIBRARY MAPPING
Diskfiles Needed
Using the Utility
Example: Map of SYSTEM.LIBRARY
SYSTEM RECONFIGURATION
Diskfiles Needed
Using the Utility
External Terminal Requirements
Miscellaneous Information
General Terminal Information
Control Key Information
Video Screen Control Characters
List of All SETUP Parameters
CHANGING GOTOXY COMMUNICATION
Diskfiles Needed
Example: Setup For SOROC 1IQ120
REMOVING LINEFEED FROM RETURN
Diskfiles Needed
Using the Utility
Easier Use of the Utility
CALCULATOR
Diskfiles Needed
Using the Utility
UTILITIES SUMMARY
Formatting New Diskettes
The System Librarian
Library Mapping
System Reconfiguration
Changing GOTOXY Communication
Removing Linefeed from Return
Calculator

INTRODUCTION

In the Apple Pascal operating system, the most often used program
portions can be selected from the various prompt lines. Other
programs, written to accomplish less commonly needed tasks, are
available through the X(ecute command, and new features can be added
to the operating system at any time in this way. Several of Apple
Pascal’s additions to the operating system, called Utility Programs,
are described in this chapter.

FORMATTING NEW DISKETTES

Before a new diskette (or one used in a system other than Apple Pascal)
can be used with the Apple Pascal system, it must first be

"formatted". This means that the diskette is erased, timing marks are
recorded on the diskette for the system’s reference, addresses are
stored to identify each sector and block, and zeroes are stored in all
data locations. Then, the diskette’s bootstrap program is stored in
blocks @ and 1 (on the outermost track). Finally, a diskette directory
is written, and the diskette is given the volume name BLANK: .

DISKFILES NEEDED

The following diskfiles allow you to use the diskette formatting
utility program:

FORMATTER .CODE (any diskette, any drive; required
only to start)
FORMATTER.TEXT (any diskette, any drive; required

only to start)

Diskette(s) to
be Formatted

(any drive; insert
prompted, remove
next diskette to

each diskette when
when prompted for
be formatted)

The file FORMATTER.CODE is normally found on diskette APPLE3: . When
you terminate the formatting utility program, your boot diskette

should be in the boot drive.

you to

PUT IN APPLEL:

(if APPLEl: is your boot diskette).

If it is not there, the system will tell

One-drive note: You can start the diskette formatting utility by
X(ecuting FORMATTER with APPLE3: in the drive. Wken

first prompt line appears, you can then remove APPLE3: from the drive

and put in the first diskette to be formatted.

the utility’s

Do not remove the

diskette being formatted until you are again prompted with

184 APPLE PASCAL OPERATING SYSTEM

"FORMAT WHICH DISK?". Put the boot diskette back in the drive before you
quit the utility program.

Two-drive note: You will normally place your boot diskette in the boot
drive, and place APPLE3: in the other drive to X(ecute APPLE3:FORMATTER .
When the diskette formatting utility’s first prompt line appears on

the screen, you can then remove APPLE3: from its drive and put in the
first diskette to be formatted.

USING THE UTILITY

From the Command level, with diskette APPLE3: in any available drive,
type X for X(ecute. When you are prompted

EXECUTE WHAT FILE?
respond by typing
APPLE3 :FORMATTER
(Note that you do not need to specify FORMATTER.CODE ; the .CODE suffix is
added automatically if you don”t type it.) The system then
executes FORMATTER.CODE, and displays the following message:
APPLE DISK FORMATTER PROGRAM

FORMAT WHICH DISK (4, 5, 9..12) ?

You may now remove diskette APPLE3: from its drive, if you wish. Place
in any available disk drive the new or used diskette that you wish to
format. Then type the volume NUMBER of that disk drive. For example,
if you put your new diskette in drive #5: , you should respond by typing

5
and pressing the RETURN key. First, the program checks the diskette
to be sure you are not accidentally re-formatting (and thereby
erasing) a diskette previously formatted by the Apple Pascal system.
If you forget and leave APPLE3: in the specified drive, for example,
you will be warned by the question

DESTROY DIRECTORY OF APPLE3 ?
I1f you type N for No, you will again be asked "FORMAT WHICH DISK?".
If all goes well, the disk whirrs and clacks, and this message appears:

NOW FORMATTING DISKETTE IN DRIVE 5

When formatting is complete, you will be prompted to specify the next
diskette to be formatted:

FORMAT WHICH DISK (4, 5, 9..12) ?

UTILITY PROGRAM 185

Again, put in any drive the next diskette to be formatted, and then
type that drive’s volume number.

When you have formatted all the diskettes you wish to format, respond
to the prompt

FORMAT WHICH DISK (4, 5, 9..12) ?

by just pressing the RETURN key to quit the formatting program. Be sure
that your boot diskette is in the boot drive before you quit the
formatting utility program, or your system may "hang". (If that happens,
put your boot diskette in the boot drive and press the RESET key.)

If the program has trouble formatting a diskette, this message is
displayed:

ERROR: UNABLE TO FORMAT DISK.
DISKETITE WRITE PROTECTED,
BAD MEDIA, OR BAD DRIVE.

Check the obvious causes, such as no diskette in that drive, or
improper insertion of the diskette. Occasionally, this message is
given when a used diskette is re-formatted. If you suspect that is
the only cause of trouble, just try re-formatting the diskette again
until the old information is completely erased.

THE SYSTEM LIBRARIAN

LIBRARY.CODE is a utility program on diskette APPLE3: that allows you
to link separately compiled Pascal UNITs and separately compiled or
assembled routines into a library file. If your library file is named
SYSTEM.LIBRARY and is on the boot diskette, the R(un command will
automatically Link needed UNITs and external routines from your library
into the program being R(un. UNITs which are labelled INTRINSIC (see
the Apple Pascal Language Reference Manual) are found in your library
and used without Linking.

If the R(un command does not find a needed item in the boot diskette’s
SYSTEM.LIBRARY, you can either L(ink the item in manually (see this
manual’s chapter THE LINKER) or you can put the item into a new boot
diskette library file named SYSTEM.LIBRARY . To add a new UNIT or
routine to the boot diskette’s SYSTEM.LIBRARY (or to delete one, or
even just to move one within the library), it is first necessary to
create a new, empty library file. Next, you must link each item that
you want from the original SYSTEM.LIBRARY into the new library file.
You may then add new items by linking from other codefiles into the
new library file being created. In general, your new library file is
not created with the filename SYSTEM.LIBRARY . Before the system can

186 APPLE PASCAL OPERATING SYSTEM

use your new library file automatically, you must store your library
on the boot diskette and name it SYSTEM.LIBRARY .

DISKFILES NEEDED

The following diskfiles allow you to use the librarian utility:

LIBRARY.CODE (any diskette, any drive; required

only to start)

Link Codefile(s) (any diskettes, any drives; #* specifies
containing UNITs boot diskette’s SYSTEM.LIBRARY, any
and routines to drive; each file must be available
put in new library until next prompt for LINK CODE FILE)

Output Codefile for (any diskette, any drive; * specifies
storing new library boot diskette’s SYSTEM.LIBRARY, any

drive; must be available throughout)

The file LIBRARY.CODE is normally found on diskette APPLE3: . When
you Q(uit or A(bort the librarian utility program, your boot diskette

should be in the boot drive. If it is not there, the system will
tell you to

PUT IN APPLEL:

(if APPLELl: is your boot diskette).

One-drive note: On single-drive systems, one approach is to use

the Filer to T(ransfer all necessary files onto your boot diskette before
X(ecuting LIBRARY.CODE . This is safe because the boot diskette (and the
necessary file SYSTEM.PASCAL) is available when the system returns to
COMMAND level after using the librarian. However, you can start the
librarian by X(ecuting APPLE3:LIBRARY with APPLE3: in the drive. When
the librarian’s first prompt line appears, you can put any other diskette
in the drive. For one-drive use, the Output Code file and all Link Code
files must be on the same diskette. If that diskette is not the boot
diskette, put your boot diskette back into the drive before you Q(uit the
librarian utility program.

UTILITY PROGRAM 187

Two-drive note: You will normally place your boot diskette in the boot
drive, and place APPLE3: in the other drive. When the utility’s first
prompt line appears on the screen, you can then remove APPLE3: from its
drive and put in any other diskettes as needed. The diskette
containing the Output Code file must remain in its drive throughout

use of the librarian utility.

All note: If the Output Code file’s diskette is removed from its drive
while using the librarian, all displays will indicate that the new
library is still being put together correctly. However, the indicated
transfers of items from the input Link Code files to the Output Code
file are not actually carried out, even if the Output Code file’s
diskette is placed in a drive just before Q(uitting the program.

EXAMPLE: INSTALLING A UNIT
OR ROUTINE INTO A LIBRARY

Suppose you wish to create a new library file, called NEW.LIBRARY , on
diskette MYDISK: . You want this new library file to contain all the

items currently in the boot diskette”’s APPLE1:SYSTEM.LIBRARY , and you
wish to add a regular UNIT or assembly-language routine called PILFER

from the file MYDISK:UPILFER.CODE.

One-drive note: If yours is a one-drive system, you must first use the
Filer to T(ransfer the file UPILFER.CODE from MYDISK: to your boot
diskette APPLEl: . Then Q(uit the Filer. From here on, substitute
APPLEl: wherever the example says MYDISK: .

From the Command level, with APPLE3: in any available disk drive, type
X for X(ecute. When you are prompted

EXECUTE WHAT FILE?
respond by typing
APPLE3:LIBRARY
(Note that you do not need to specify LIBRARY.CODE; the .CODE suffix is
supplied automatically.) The system then executes LIBRARY.CODE,
and soon displays the message

PASCAL SYSTEM LIBRARIAN II.1 [Bl]

At this point, you may remove APPLE3: from its drive. Next the
program prompts you for the name of an

OUTPUT CODE FILE ->

188 APPLE PASCAL OPERATING SYSTEM

which will become your new library file. For this example, with
MYDISK: in any available drive, respond with the name

MYDISK:NEW.LIBRARY
One-drive note: you should respond APPLEl:NEW.LIBRARY .

This filename is used exactly as you type it; no suffix is added by
the system. The diskette containing the Output Code file must remain
in its drive throughout use of the librarian.

The program now asks for the name of a
LINK CODE FILE ->

which will provide the first source of UNITs and routines to link into
NEW.LIBRARY . The correct response here, with APPLEl: in any drive, is

APPLE1:SYSTEM.LIBRARY
(You can also type * to specify the boot diskette’s SYSTEM.LIBRARY .)

The screen next displays the '"slot number', segment number (in parentheses),
name, and length in bytes of each UNIT or routine currently in the input
Link Code File (right now, SYSTEM.LIBRARY). There are a maximum of 16
"slots", each containing one code or data segment, in any Apple Pascal
program or library file. Note that an Intrinsic UNIT may occupy two

slots, one for the code segment and one for the data segment. The number
of bytes given for an item is its length in the library. This length
includes the number of bytes the item will occupy when linked into your
program, plus a considerable number of bytes of Linker information that

is not placed in your program.

The screen now looks something like this (you may, of course, have to
use CTRL-A to see the right half of the display):

SLOT TO LINK AND <SPACE>, = FOR ALL, ? FOR SELECT, N(EW FILE, Q(UIT,
A (BORT

LINK CODE FILE -> APPLEl:SYSTEM.LIBRARY

#-(3¢) LONGINTI 2452 8- 1}
1-(31) PASCALIO 1238 9-]
2-(29) TRANSCEN 1168 1¢-]
3-(22) APPLESTU 662 11-]
4-(2¢)) TURTLEGR 52¢2 12—]
5-(21) TURTLEGR 386 13- 1)
6- 1] 14—)
7- 1] 15-]

OUTPUT CODE FILE => MYDISK:NEW.LIBRARY
CODE FILE LENGTH - 1

UTILITY PROGRAM 189

You now type the slot number, a number from ¢ through 15 taken from the
leftmost column of the Link Code File display, of an item that you wish
placed in the new library file. Then press the spacebar to terminate
your entry. Next, when you are prompted

SLOT TO LINK INTO?

type the number of the slot which the previously specified item should
occupy when it is placed in the Output Code File (i.e. NEW.LIBRARY). And
again, press the spacebar to terminate your entry. At this time, the
transfer of the specified item is carried out.

NOTE: you may abandon your attempt to make a new library at any time,
simply by typing A for A(bort instead of a slot number.

For each item placed in the new library file, the Librarian reads that
item from the specified slot of the input Link Code File and stores it
in the specified slot of the Output Code File. Items may be placed in
any available library slot, in any order. After each item is
transferred, the librarian changes the display for the current state of
the Output Code File, which is your new library file. If you attempt
to put two input items into one output slot, this message appears:

WARNING - SLOT xx ALREADY LINKED. PLEASE RECONFIRM (Y/N) -

If you type Y , the item previously placed in the specified slot will be
replaced by the item currently being moved. Type N to abandon this move.

Note that the old item is NOT removed from the library file you are making
even though it no longer appears in any display of the file”s contents.
This extra code, which makes your new library file larger than it needs to
be, will disappear when you make another new library from this one.

To copy every item from the old SYSTEM.LIBRARY into your new library

file, you may follow this sequence (press the spacebar to terminate each
entry):

gLOT TO LINK INTO? @
éLOT TO LINK INTO? 1
gLOT TO LINK INTO? 2
gLOT TO LIMK INTO? 3
gLOT TO LINK INTO? 4
5

SLOT TO LINK INTO? 5

190 APPLE PASCAL OPERATING SYSTEM

Or you may use one of the other options given in the prompt line.

Type an equals sign (=) to quickly copy every item from its slot in the
input Link Code File into the same slot in the Output Code File. If you
type a question mark (?) the librarian will ask you about each input
item in turn:

COPY SLOT ¢?

Type Y if you wish the item in slot @ to be copied into slot § of your
new library file, or type N if you do not wish to copy that item. When
you are using the = or the ? to copy items, each item copied from a slot
in the input library will automatically be placed in the slot of the same
number in your new output library.

When all of the items that you want from this input Link Code File
have been copied into the Output Code File, a new input file is
requested by typing N for N(ew file. You are again prompted for a

LINK CODE FILE ->

In this example, a separately compiled regular Pascal UNIT called PILFER
is assumed to exist in a codefile called UPILFER.CODE , but the process
would be identical if PILFER were a separately assembled machine-
language procedure.

Type the name of this new input Link Code File:
MYDISK:UPILFER
One-drive note: You should type APPLEL:UPILFER

The librarian first looks on the specified diskette for a file whose
filename is exactly as you typed it. If there is no file with that exact
filename and that filename does not end in .CODE , the suffix .CODE is
added to the filename and the search is repeated. If the search is still
unsuccessful, one of the following messages is displayed:

1/0 ERROR # 10 (your file was not found)
I/0 ERROR # 9 (your diskette was not found)

In either case, you are prompted to try again. The only way to escape
the program at this point is by typing a correct file specification or
>y pressing the RETURN key and then typing A for A(bort.

UTILITY PROGRAM 191

When you correctly type the name of this new Link Code File, the
following display appears:

LINK CODE FILE -> MYDISK:UPILFER.CODE

g~ @ 8-)
1- 1) 9- 1)
2- 1] 1¢-(25) PILFER 362
3- ¢ 11- 1]
b= ¢ 12—]
5= 1 13-)
6~ g 14= ¢
7- 1) 15- 1)

In this example, the Unit PILFER occurs in UPILFER.CODE’s slot number 10
and is to be linked into slot number 7 (any unused slot is equally good)
within NEW.LIBRARY . To accomplish this, you should respond (pressing
the spacebar after each response):

19
SLOT TO LINK INTO? 7

The final display of the output library segment table is thus:

OUTPUT CODE FILE -> MYDISK:NEW.LIBRARY
CODE FILE LENGTH - 39

@¢-(3¢) LONGINTI 2452 8- 1)
1-(31) PASCALIO 1238 9-)
2-(29) TRANSCEN 1168 19— ")
3-(22) APPLESTU 662 11-)
4-(2@) TURTLEGR 5202 12- [0}
5-(21) TURTLEGR 386 13- ¢
6—- 1] 14- ')
7-(25) PILFER 362 15- ?

The new library’s length in blocks is displayed and in this example is 39.
Once the needed items from all input Link Code Files have been put

into your new library’s Output Code File, you lock the new library by
typing Q for Q(uit. This question appears at the bottom of the

screen:

NOTICE?

This gives you the chance to place a copyright notice in your library
file. The notice will be displayed when a library map is produced for

192 APPLE PASCAL OPERATING SYSTEM

your file (see the next section of this chapter), and provides an
identifying line. You might type

COPYRIGHT 1979 APPLE COMPUTER AND ME

for example (any message, up to the end of the current typing line).
If you do not want a copyright in your library file, simply press the
RETURN key. When the COMMAND prompt line re-appears, your new library
is complete.

USING THE NEW LIBRARY

Before you can use your new library, the old SYSTEM.LIBRARY on your
boot diskette should be either removed or renamed. Then your new
library file must be T(ransferred onto your boot diskette, and its
name C(hanged from NEW.LIBRARY to SYSTEM.LIBRARY . You should then
I(nitialize the system so that the system will "learn" about the new
library’s contents and diskette position.

SHORTHAND FILENAMES

In response to the initial prompt "OUTPUT CODE FILE ->" we could have
just as easily said SYSTEM.LIBRARY followed by another SYSTEM.LIBRARY
in response to the prompt "LINK CODE FILE ->". If you do this,
however, the original SYSTEM.LIBRARY will be removed automatically
upon completion of the linking process. Typing just * in response
to "OUTPUT CODE FILE ->" and again in response to "LINK CODE FILE ->"
is an abbreviated way to indicate that the old SYSTEM.LIBRARY will
simply be replaced by the new SYSTEM.LIBRARY .

The system only "learns'" about the new material in SYSTEM.LIBRARY
when the system is booted. If you specified SYSTEM.LIBRARY or * as
the Output Code File, the message

PLEASE RE-INITIALIZE SYSTEM

appears after you respond to the NOTICE? prompt. Just press the
Apple’s RESET key.

UTILITY PROGRAM 193

LIBRARY MAPPING

The library mapping utility program produces a map of a library file
(or any codefile) and lists the Linker information maintained for each
segment of the file. In the case of segments which are Pascal UNITs
the map file will also contain the interface section of the UNIT. See
this manual’s chapter THE LINKER for more information. See the Apple
Pascal Language Reference Manual for greater detail about UNITs and
linkage to external routines.

DISKFILES NEEDED

The following diskfiles allow you to use the library mapping utility
program:

LIBMAP.CODE (any diskette, any drive; required
only to start)
Library Codefile(s) (any diskettes, any drives; * specifies
to be mapped boot diskette’s SYSTEM.LIBRARY, any

drive; each file must be available
until next prompt for LIBRARY NAME)

Map output textfile (any diskette, any drive, or any other
output device; default is CONSOLE: ;
must be available throughout)

The file LIBMAP.CODE is normally found on diskette APPLE3: . When you
terminate the library mapping utility program, your boot diskette
should be in the boot drive. If it is not there, the system will tell
you to

PUT IN APPLEL:

(if APPLEl: is your boot diskette).

One-drive note: On single-drive systems, one approach is to use

the Filer to T(ransfer all necessary files onto your boot diskette
before X(ecuting LIBMAP.CODE . This works well because the boot diskette
(and the necessary file SYSTEM.PASCAL) is available when you return to
COMMAND level after using the utility. However, you can X(ecute
LIBMAP.CODE with APPLE3: in the drive. When the first prompt line
appears, you can put any other diskette in the drive. If you are

storing the Map Output textfile on diskette, you must place all the

194 APPLE PASCAL OPERATING SYSTEM

input Library codefiles on the same diskette as the Map Output
textfile. If you specify the Map Output File Name as PRINTER: or
CONSOLE: you may put in the drive, one at a time, the diskettes
containing the input Library codefiles, leaving each diskette in the
drive while Library files on that diskette are being mapped. Put
the boot diskette back in the drive before you quit the library
mapping programe.

Two-drive note: You will normally place your boot diskette in the boot
drive, and place APPLE3: in the other drive. When the utility’s first
prompt line appears on the screen, you can then remove APPLE3: from its
drive and put in any other diskettes as needed. If you are storing

the Map Output textfile on diskette, that diskette must remain in its
drive throughout the mapping procedure.

USING THE UTILITY

With the COMMAND prompt line showing, and with diskette APPLE3: in any
available disk drive, type X for X(ecute. When the prompt

EXECUTE WHAT FILE?
appears, respond by typing
APPLE3:LIBMAP

(Note that you do not need to specify LIBMAP.CODE ; the suffix .CODE
is supplied automatically if you don’t type it). Soon this message
appears

LIBRARY MAP UTILITY II.1 [A2]
and the program prompts you to
ENTER LIBRARY NAME:

When you respond by typing an input Library (or any codefile) file
specification, the program first attempts to find the file exactly as
specified. If this search fails, the suffix .CODE is added and the

search is made again. If the specified file or diskette is not found,
this message appears:

BAD FILE
ENTER LIBRARY NAME:

Other errors give the message

NOT A CODE FILE .
ENTER LIBRARY NAME:

UTILITY PROGRAM 195

If you respond by simply typing an asterisk (*), this specifies the
file SYSTEM.LIBRARY, on the boot diskette in any drive, as the input
Library file .

The library mapping utility is usually used to list library
definitions; but the option is also available to include Linker
information such as intra-library symbol references. Should this
feature be desired, type a Y when queried

LIST LINKER INFO TABLE (Y/N)?
If you respond by typing a Y , you will also be asked
LIST REFERENCED ITEMS (Y/N)?
A space (or pressing the RETURN key) is considered an N .
You are now prompted to specify a
MAP OUTPUT FILE NAME:

Note that if you don“t add the suffix .TEXT to the filename, the
system automatically will add it for you. To suspend this suffix-
adding feature, you must type an extra period after the filename.
Responding by pressing only the RETURN key sends the map output to
CONSOLE: , by default.

Several libraries may be mapped in succession. These maps will all be
sent to the same Map Output File specified for the first input Library
file.

To quit the library mapping utility, press the RETURN key the next
time you are prompted to

ENTER LIBRARY NAME:

Be sure your boot diskette is in the boot drive before you quit this
utility.

196 APPLE PASCAL OPERATING SYSTEM

EXAMPLE: MAP OF SYSTEM. LIBRARY

LIBRARY MAP FOR APPLE@:SYSTEM.LIBRARY

COPYRIGHT 1979 APPLE COMPUTER INC.

Segment #3@:
System version = II.l, code type is 6502
LONGINTI 1library unit (LINKED INTRINSIC)

TYPE DECMAX = INTEGER[36];

STUNT = RECORD CASE INTEGER OF
2:(W2:INTEGER[4]);
3:(W3:INTEGER[8]);
4: (W4:INTEGER [12])
5:(W5:INTEGER [16])
6: (W6:INTEGER [20])
7:(W7:INTEGER[24])
8: (W8:INTEGER[28])
9:(W9:INTEGER [32])
1¢: (W1@: INTEGER [36])

END;

.
’
.
bl
.
>
.
’
.
b
.
bl

PROCEDURE FREADDEC(VAR F: FIB; VAR D: STUNT; L: INTEGER);
PROCEDURE FWRITEDEC (VAR F: FIB; D: DECMAX; RLENG: INTEGER);

Segment #31:
System version = II.l, code type is Undefined
PASCALIO 1library unit (LINKED INTRINSIC)

PROCEDURE FSEEK(VAR F: FIB; RECNUM: INTEGER);
PROCEDURE FREADREAL (VAR F: FIB; VAR X: REAL);
PROCEDURE FWRITEREAL(VAR F: FIB; X: REAL; W, D: INTEGER);

Segment #29:

System version = II.l, code type is P-Code (most sig. lst)
TRANSCEN 1library unit (LINKED INTRINSIC)

{$ 3

FUNCTION SIN(X:REAL):REAL;
FUNCTION COS(X:REAL):REAL;
FUNCTION EXP(X:REAL):REAL;
FUNCTION ATAN(X:REAL):REAL;
FUNCTION LN (X:REAL):REAL;

FUNCTION LOG(X:REAL):REAL;
FUNCTION SQRT (X:REAL):REAL;

UTILITY PROGRAM 197

Segment #22:

System version = II.l, code type is 65@2
APPLESTU 1library unit (LINKED INTRINSIC)
{$ 3}

FUNCTION PADDLE(SELECT: INTEGER): INTEGER;
FUNCTION BUTTON (SELECT: INTEGER): BOOLEAN;
PROCEDURE TTLOUT (SELECT: INTEGER; DATA: BOOLEAN);
FUNCTION KEYPRESS: BOOLEAN;

FUNCTION RANDOM: INTEGER;

PROCEDURE RANDOMIZE;

PROCEDURE NOTE (PITCH,DURATION: INTEGER);

Segment #20:
System version = II.l, code type is 6502
TURTLEGR library unit (LINKED INTRINSIC)

TYPE
SCREENCOLOR=(none,white,black,reverse,radar,blackl,
green,violet,whitel,black2,orange,blue,white2);

PROCEDURE INITTURTLE;

PROCEDURE TURN (ANGLE: INTEGER);

PROCEDURE TURNTO (ANGLE: INTEGER);

PROCEDURE MOVE(DIST: INTEGER);

PROCEDURE MOVETO (X,Y: INTEGER);

PROCEDURE PENCOLOR (PENMODE: SCREENCOLOR);

PROCEDURE TEXTMODE;

PROCEDURE GRAFMODE;

PROCEDURE FILLSCREEN (FILLCOLOR: SCREENCOLOR);

PROCEDURE VIEWPORT (LEFT,RIGHT,BOTTOM,TOP: INTEGER);

FUNCTION TURTLEX: INTEGER;

FUNCTION TURTLEY: INTEGER;

FUNCTION TURTLEANG: INTEGER;

FUNCTION SCREENBIT(X,Y: INTEGER): BOOLEAN;

PROCEDURE DRAWBLOCK (VAR SOURCE; ROWSIZE,XSKIP,YSKIP,WIDTH,HEIGHT,
XSCREEN,YSCREEN,MODE: INTEGER);

PROCEDURE WCHAR(CH: CHAR);

PROCEDURE WSTRING(S: STRING);

PROCEDURE CHARTYPE (MODE: INTEGER);

Segment #21:
System version = II.l, code type is P-Code (least sig. lst)
TURTLEGR data segment

198 APPLE PASCAL OPERATING SYSTEM

SYSTEM RECONFIGURATION

The Apple Pascal Operating System keeps certain information about the
configuration of your system in a file called SYSTEM.MISCINFO .
During each system initialization this file is read into memory, and
from there it is used by many parts of the system, particularly by the
Editor.

SYSTEM.MISCINFO comes already set up to work correctly with your
Apple’s keyboard and its TV or monitor display, and you can operate
the system without ever having to study this section of the manual.

In addition, the language system diskette APPLE3: contains a file
named SOROC.MISCINFO , which contains the configuration information
necessary to run the Apple Pascal system with a Soroc IQl2@ external
terminal, and another file named HAZEL.MISCINFO , which contains the
configuration information for a Hazeltine 15¢@ external terminal. To
use either of those terminals, it is only necessary to rename the old
SYSTEM.MISCINFO, and then change the name of either SOROC.MISCINFO or
HAZEL.MISCINFO (the one corresponding to your terminal) to
SYSTEM.MISCINFO . Finally, you must read the next section of this
chapter, CHANGING GOTOXY COMMUNICATION, which tells you how to bind a
new GOTOXY routine into SYSTEM.PASCAL . That section has a complete
example for setting up the Apple to use a SOROC IQl2(terminal.

You only need to read the rest of this section if you are going to use
the Apple Pascal system with an external terminal, and that external
terminal is neither a Soroc IQl2@ nor a Hazeltine 150@.

DISKFILES NEEDED

The following diskfiles allow you to use the system reconfiguration
utility program:

SETUP.CODE (any diskette, any drive; required to
start, and also required to be in
same drive any time the T(each
command is selected)

Output codefile, creates (boot diskette, any drive; optional)
NEW.MISCINFO [l block]

The file SETUP.CODE is normally found on diskette APPLE3: . All
systems will normally start the reconfiguration program by X(ecuting
APPLE3:SETUP with APPLE3: in any available disk drive.

<

IMPORTANT: The T(eaching portion of this utility is a segment
procedure overlay, which means the system must re-access SETUP.CODE in
its original disk location when you type T for T(each. If you

UTILITY PROGRAM 199

select the T(each command, you must first be sure the diskette
containing SETUP.CODE (usually APPLE3:) is still in the drive it
occupied when SETUP.CODE was X(ecuted. If it is not there when you
type T for T(each, the system may "hang", and may even cause damage
to the information on other diskettes in the system. It is not
necessary to keep APPLE3: in its drive after you have completed the

T (each sequence, or if you do not use the T(each command.

When you E(xit the reconfiguration utility program, your boot diskette
should be in the boot drive. If it is not there, the system will
tell you

PUT IN APPLEL:

(if APPLEl: is your boot diskette).

One-drive note: You will normally put APPLE3: in the disk drive to
begin, and leave it there while changing the setup information. When
you are ready to Q(uit the reconfiguration utility and do a D(isk
update, you can remove APPLE3: from the drive and put in your boot
diskette. Your boot diskette must be in the drive if you do a D(isk
update, which creates the file NEW.MISCINFO on the boot diskette. Put
the boot diskette in the drive before you E(xit the reconfiguration
utility program.

Two-drive note: You will normally place your boot diskette in the boot
drive, and place APPLE3: in the other drive to begin. Ordinarily, you
should leave these disks in their drives throughout the use of the
reconfiguration utility.

USING THE UTILITY

If you are going to use an external terminal, certain information
needs to be initially set up by you to conform to your particular
hardware configuration or to your taste or convenience. Most of this
information concerns the nature of your terminal and keyboard,
although there are a few miscellaneous fields.

The system reconfiguration utility is run by entering the Command
level of the system and, with APPLE3: in any available disk drive,
typing X for X(ecute. When the prompt message

EXECUTE WHAT FILE?

appears, respond by typing the filename

APPLE3:SETUP

200 APPLE PASCAL OPERATING SYSTEM

(Note that you do not need to specify SETUP.CODE ; the .CODE suffix is

automatically added to any filename you type.) You should then see
the following:

INITIALIZINGeeooeccesocccscsccassscsnsnnsne

SETUP: C(HANGE T(EACH H(ELP Q(UIT [S.2]

All commands to the SETUP program are invoked by typing a single
letter chosen from the promptline

SETUP: C(HANGE T(EACH H(ELP Q(UIT
Type H for H(elp in finding out what the commands at this level do.

Type T if you wish the program to T(each you how to use the
reconfiguration utility. This command tells you how to enter non-
printing characters, how to avoid making a prompted change, how to
delete a typing error, how to change the default radix, and other
useful information.

©

IMPORTANT: If you type T for T(each, you must first be sure that
APPLE3: is still in the drive it occupied when APPLE3:SETUP.CODE was
X(ecuted. If it is not there, the system may "hang'", and may even
cause damage to the information on other diskettes in the system. It

is not necessary to keep APPLE3: in its drive after you have completed
the T(each sequence, or if you do not use the T(each command.

Type C if you wish to C(hange or examine the various items of the
system’s information about your hardware configuration. You may
either change a single item that you specify from the LIST OF ALL
SETUP PARAMETERS (at the end of this section); or you may choose to
have the program step through all the parameters, letting you examine
or change each one. The T(each command gives a full explanation of
all of these options.

Type Q when you wish to make your configuration changes permanent
and leave the reconfiguration program. The reconfiguration utility’s
Q(uit command offers several options:

D(isk update: creates the file NEW.MISCINFO, on the boot diskette
in any drive. This filename must later be changed to
SYSTEM.MISCINFO before the new setup can be used by the
system. No message is given if the boot diskette is not
found, but no file NEW.MISCINFO is created. You are then
returned ta the Q(uit level of the reconfiguration program.

M(emory update: places the definitions in memory, where they
change the system setup until the next boot, RESET, or
initialization. You are then returned to the Q(uit level
of the reconfiguration program.

UTILITY PROGRAM 201

R(eturn: takes you back to the main prompt line of the
reconfiguration program, in case you are not done.

H(elp: explains the Q(uit options, and then returns you to the
Q(uit level of the reconfiguration program.

E(xit: returns you to the operating system’s Command level.

Put your boot diskette back in the boot drive before
you type E .

The operation of the reconfiguration utility is self teaching (just
type T for T(each from the main SETUP prompt line), so the rest of
this section explains the various items of information that this
utility was designed to change.

EXTERNAL TERMINAL REQUIREMENTS

By using an Apple Communications Interface Card and an external terminal
such as the Soroc IQl2@, it becomes possible to do text and program
editing in upper and lower case characters, on a large (8§ characters by
24 lines) screen. For maximum effectiveness, the Editor requires a
reasonably powerful CRT terminal with the following features:

CLEAR TO END OF LINE
CLEAR TO END OF SCREEN

GOTOXY ADDRESSING

go directly to a given row and column on the screen

NDFS - mnon-destructive forward space (the inverse of back-
space)
LF - down one line (and if at the bottom of the screen

scrolls up)

RLF - reverse line feed (up one line; not required to
reverse scroll)

The Soroc IQl2¢¥, DEC VT52 and Hazeltine 15@¢@ are examples of such
terminals. The main advantage of using an external terminal with the
Apple Pascal system is that it can provide upper and lower case for
text editing, and allows you to see the system’s entire eighty-
character line at one time. For most programming purposes, an external
terminal is completely unnecessary.

The reconfiguration utility does not tell the system how to do random-
access cursor addressing on an external terminal (for those terminals
which have this capability). To allow the system to use that feature,
please refer to the next section, CHANGING GOTOXY COMMUNICATION.

Note: A parameter value of "NUL" (ASCII () usually means the parameter
does not apply to the system being set up.

202 APPLE PASCAL OPERATING SYSTEM

MISCELLANEOUS INFORMATION
HAS CLOCK Value: TRUE or FALSE

Will be FALSE for the Apple. No provision has been made for
operation with accessory real-time clocks.

STUDENT Value: TRUE or FALSE
If true, tells the system to simplify certain parts of the system

for novice use. E.g., an error detected while compiling sends
student back to the Editor without choice.

HAS 8510A Value: TRUE or FALSE

This is always FALSE on an Apple.

HAS BYTE FLIPPED MACHINE Value: TRUE or FALSE

Must be FALSE for the Apple.

GENERAL TERMINAL INFORMATION
HAS SLOW TERMINAL Value: TRUE or FALSE.
When this field is true, the system issues abbreviated promptlines

and messages. Suggested setting: 6@@ baud and under -- True,
otherwise False. This is normally FALSE on the Apple.

HAS RANDOM CURSOR ADDRESSING Value: TRUE or FALSE
Only applies to video terminals. See Section 4.7 in order to

allow the system to make use of this feature. On the Apple,
this field is TRUE.

HAS LOWER CASE Value: TRUE or FALSE

This is normally FALSE for an Apple, although it may be true if
you have an external terminal with lower case.

UTILITY PROGRAM 203

SCREEN WIDTH Value: The number of characters
per line of a terminal.

For most external terminals, this should be 8@. For the Apple
with no external terminal, setting a value of 79 allows almost all
of the system’s 8@-character window to be viewed (with the help of
CTRL-A), while causing some prompt lines to be displayed in a
shortened form that is better suited to a 4@-character screen.

SCREEN HEIGHT Value: The number of lines per display
screen of a video terminal.

Set to ¢ for a hard copy terminal or other terminal in which
paging is not appropriate. Some terminals may require you to set
the screen to one more than the number of available screen lines
to insure proper scrolling. This is set to 24 for the Apple.

NONPRINTING CHARACTER Value: Any printing character.

Specifies what should be displayed by the terminal to indicate the
presence of a non-printing character. Recommended setting: ASCII ? .

VERTICAL MOVE DELAY Value: The number of nulls to send
after a vertical cursor move.

Many types of terminals require a delay after certain cursor
movements which enables the terminal to complete the movement
before the next character is sent. This number of nulls will be
sent after carriage returns, ERASE TO END OF LINE, ERASE TO END OF
SCREEN and MOVE CURSOR UP. This number is @ on the Apple.

CONTROL KEY INFORMATION

You may choose which control keys suit your particular keyboard

arrangement and your taste. Again, this section has already been set
up for your Apple.

Some keyboards generate two codes when certain single keys are
pressed. If that is the case for any of the keys mentioned here, it
must be noted in the field PREFIXED [<fieldname>] which has either the
value TRUE or the value FALSE. The prefix for all such keys must be
the same and must be noted in the field LEAD IN FROM KEYBOARD. This
feature may also be used to access control functions with two-
character sequences if your keyboard is unable to generate many
control characters. As an example, suppose your keyboard had a vector
pad which generated the value pairs ESC-U , ESC-D , ESC-L and ESC-R

204 APPLE PASCAL OPERATING SYSTEM

for the keys for Up-arrow, Down-arrow, Left-arrow and Right-arrow,
respectively. Assume also that all other keys on the keyboard
generate only single codes. Then the user would give the following
fields the following values:

KEY FOR MOVING CURSOR UP ASCITI U
KEY FOR MOVING CURSOR DOWN ASCITI D
KEY FOR MOVING CURSOR LEFT ASCII L
KEY FOR MOVING CURSOR RIGHT ASCII R
LEAD IN FROM KEYBOARD ESC
PREFIXED [KEY FOR MOVING CURSOR UP] TRUE
PREFIXED [KEY FOR MOVING CURSOR DOWN] TRUE
PREFIXED [KEY FOR MOVING CURSOR LEFT] TRUE
PREFIXED [KEY FOR MOVING CURSOR RIGHT] TRUE

KEY FOR STOP

Console output stop character. The STOP character is a toggle; when
pressed, the key will cause output to the file “OUTPUT’ to cease.
When the key is depressed again, the write to file “OUTPUT’ will
resume where it left off. This function is very useful for reading
data which is being displayed faster than one can read. Suggested
setting: CTRL-S

KEY FOR FLUSH

Console output cancel character. Similar in concept and usage to the
STOP key, the FLUSH key will cause output to the file “OUTPUT” to go
undisplayed until FLUSH is pressed again or the system writes to file
‘KEYBOARD’. Note that, unlike the STOP key, processing continues
uninterrupted while output goes undisplayed. Suggested setting:
CTRL-F

KEY FOR BREAK

Typing the character BREAK will cause the program currently executing to
be terminated with a run-time error immediately. Suggested setting:
something difficult to hit accidentally. This is set to ASCII @ on the
Apple which, in this case, represents CTRL-@ .

KEY TO END FILE

Console end of file character. When reading from the files KEYBOARD
or INPUT or the unit CONSOLE: , this key sets the Boolean function EOF
to TRUE. See the description of the EOF intrinsic in the Apple Pascal
Language Reference Manual. Suggested setting: ASCII ETX (CTRL-C)

UTILITY PROGRAM 205

KEY TO DELETE CHARACTER

Each time you press this key one character is removed from the current
line, until nothing is left on that line. Suggested setting: ASCII BS
(left-arrow key, or CTRL-H)

KEY TO DELETE LINE

Depressing LINE DELETE will cause the current line of input to be
erased. Suggested setting: CTRL-X

The rest of this section contains information
only of interest to users who are using video
display terminals with a selective erase
capability and may be safely ignored by users
having any other kind of terminal, such as
hardcopy terminals or storage tube terminals.

KEY TO MOVE CURSOR UP

KEY TO MOVE CURSOR DOWN
KEY TO MOVE CURSOR LEFT
KEY TO MOVE CURSOR RIGHT

These keys are used by the screen oriented editor to control the basic
motions of the cursor. If the keyboard has a vector pad, set these
fields to the values it generates. Otherwise, we suggest that you
choose four keyboard keys which lie in the pattern of a vector pad,
and use the control codes which correspond to them. For example, the
keys ‘0, “.”, ‘K’ and “;° on most keyboards encircle an imaginary

vector pad. You may wish to use a prefix character before such keys
as described above.

On the Apple, of course, the right-arrow and left-arrow keys serve

for right and left cursor motion. Because of their vertical
orientation, CTRL-O and CTRL-L have been chosen for up and down motion
of the cursor.

EDITOR "ESCAPE" KEY

The key which, in the system screen oriented editor, is to be used to

escape from commands, reversing any action taken. Suggested setting:
ESC

206 APPLE PASCAL OPERATING SYSTEM

EDITOR "ACCEPT" KEY

The key which, in the system screen oriented editor, is to be used to
accept commands, making permanent any action taken. Suggested
setting: ASCII ETX (CTRL-C).

VIDEO SCREEN CONTROL CHARACTERS

This section describes the characters which, when sent to the terminal
by the computer, control the terminal’s actions. You should consult
the manual for your terminal to find the appropriate values. If a
terminal does not have one of these characters, the field should be
set to ¢ unless otherwise directed.

Some screens require a two-character sequence to exercise some of
their functions. If the first character in all of these sequences is
the same, it can be set as the value of the field LEAD IN TO SCREEN
and for each <fieldname> which requires that prefix, the user must set
the field PREFIX[<fieldname>] to TRUE. For example, suppose ERASE TO
END OF LINE and ERASE TO END OF SCREEN were respectively performed by
the sequences ESC-L and ESC-S but all the other screen controls
were single characters. The user would then set the following fields
to the following values:

LEAD IN TO SCREEN ASCII ESC
ERASE TO END OF LINE ASCII L
ERASE TO END OF SCREEN ASCII S
PREFIXED [ERASE TO END OF SCREEN] TRUE
PREFIXED [ERASE TO END OF LINE] TRUE

ERASE TO END OF SCREEN

The character which erases the screen from the current cursor position
to the end of the screen.

ERASE TO END OF LINE
The character which, when sent to the screen, erases all characters

from the current cursor position to the end of the line the cursor is
on.

ERASE LINE

The character which, when sent to the screen, erases all the
characters on the line the cursor is currently on.

UTILITY PROGRAM 207

ERASE SCREEN

The character which, when sent to the screen, erases the entire
screen.

BACKSPACE

The character which, when sent to the screen, causes the cursor
to move one space to the left.

MOVE CURSOR HOME
The character which moves your cursor to the upper left of the current

page. IMPORTANT: If your terminal does not have such a character,
set this field to CARRIAGE RETURN, ASCII mnemonic CR.

MOVE CURSOR UP
MOVE CURSOR RIGHT

The characters which move your cursor non-destructively one space in
those directions.

LIST OF ALL SETUP PARAMETERS

Parameter Default value for SYSTEM.MISCINFO
Field Name on APPLE@: or APPLEl:

BACKSPACE left-arrow key (CTRL-H)
EDITOR ACCEPT KEY CTRL-C

EDITOR ESCAPE KEY ESC

ERASE LINE NUL (ASCII @)
ERASE SCREEN CTRL-L

ERASE TO END OF LINE CTRL~]

ERASE TO END OF SCREEN CTRL-K

HAS 8510A FALSE

HAS BYTE FLIPPED MACHINE FALSE

HAS CLOCK FALSE

HAS LOWER CASE FALSE

HAS RANDOM CURSOR ADDRESSING TRUE

HAS SLOW TERMINAL FALSE

KEY FOR BREAK NUL (ASCII @)
KEY FOR FLUSH CTRL-F

KEY FOR STOP CTRL~-S

KEY TO DELETE CHARACTER left—arrow key (CTRL-H)
KEY TO DELETE LINE CTRL-X

208 APPLE PASCAL OPERATING SYSTEM

KEY TO END FILE
KEY TO MOVE CURSOR DOWN

KEY TO MOVE CURSOR LEFT
KEY TO MOVE CURSOR RIGHT

KEY TO MOVE CURSOR UP

CTRL-C
CTRL-L
left—-arrow key (CTRL-H)
right-arrow key (CTRL-U)
CTRL-0

LEAD IN FROM KEYBOARD NUL (ASCII @)
LEAD IN TO SCREEN NUL (ASCII @)
MOVE CURSOR HOME CTRL-Y
MOVE CURSOR RIGHT CTRL-\
MOVE CURSOR UP CIRL-_
NON PRINTING CHARACTER 7
PREFIXED [DELETE CHARACTER] FALSE
PREFIXED [EDITOR ACCEPT KEY] FALSE
PREFIXED [EDITOR ESCAPE KEY] FALSE
PREFIXED [ERASE LINE] FALSE
PREFIXED [ERASE SCREEN] FALSE
PREFIXED [ERASE TO END OF LINE] FALSE
PREFIXED [ERASE TO END OF SCREEN] FALSE
PREFIXED [KEY FOR BREAK] FALSE
PREFIXED [KEY FOR FLUSH] FALSE
PREFIXED [KEY TO MOVE CURSOR DOWN] FALSE
PREFIXED [KEY TO MOVE CURSOR LEFT] FALSE
PREFIXED [KEY TO MOVE CURSOR RIGHT] FALSE
PREFIXED [KEY TO MOVE CURSOR UP] FALSE
PREFIXED [KEY FOR STOP] FALSE
PREFIXED [KEY TO DELETE CHARACTER] FALSE
PREFIXED [KEY TO DELETE LINE] FALSE
PREFIXED [KEY TO END FILE] FALSE
PREFIXED [MOVE CURSOR HOME] FALSE
PREFIXED [MOVE CURSOR RIGHT] FALSE
PREFIXED [MOVE CURSOR UP] FALSE
PREFIXED [NON PRINTING CHARACTER] FALSE
SCREEN HEIGHT 24
SCREEN WIDTH 79
STUDENT FALSE
VERTICAL MOVE DELAY g

UTILITY PROGRAM 209

CHANGING GOTOXY COMMUNICATION

The GOTOXY procedure, which allows the Apple Pascal operating system to
communicate with the video screen, is already set up correctly for the
Appie. GOTOXY is included in the system as one of the intrinsic
procedures in the Apple Pascal language. See the Apple Pascal Language
Reference Manual for more details about the intrinsic GOTOXY . This
portion of the manual is only presented for your reference, as you will
not normally need to change the GOTOXY procedure unless you want to use
an external terminal.

If you are going to use an external terminal, you should first read the
previous section of this chapter, SYSTEM RECONFIGURATION, then follow
the directions given there for creating a new boot diskette file
SYSTEM.MISCINFO .

The program BINDER.CODE on diskette APPLE3: alters the file SYSTEM.PASCAL
on the boot diskette. You are prompted to provide "GOTOXY", a procedure
which must be created and bound into the system (only once) in order to
make the system communicate correctly with your external terminal’s screen.

On diskette APPLE3: there are examples of Pascal GOTOXY procedures
already written for two of the more popular external terminals. The
file SOROCGOTO contains the correct GOTOXY procedure for the Soroc
IQ12@, and the file HAZELGOTO contains a GOTOXY for the Hazeltine

15¢@¢. These procedures have already been compiled into their .CODE
versions, but the .TEXT versions have been included also, to give you a
mode] which can be modified for use with other terminals.

If the GOTOXY cursor-addressing procedure for your terminal is not
already on APPLE3:, you must create one (by modifying SOROCGOTO.TEXT)
and compile it. The procedure may NOT be named GOTOXY.

The GOTOXY procedure sends the cursor to a point on the screen
determined by a specified pair of coordinates (XCOORD,YCOORD). The
procedure assumes the following:

l. A video screen terminal

2. An Apple Pascal system

3. The upper left-hand corner of the screen is X=@, Y=¢

4. GOTOXY corrects for bad input data: X-coordinates must
be limited to the number of characters per line
(integers in the range @ through 79 for a SOROC IQl2§);
Y-coordinates must be limited to the number of lines
per screen (integers in the range @ through 23 for a
SOROC 1Q126).

In writing your own Pascal GOTOXY procedure, here are two common errors:

Possible error: Possible cure:

Nil memory reference Remove the program heading
at compile time and try again

Value range error (*$U~*) should be the first
when executing BINDER thing in the GOTOXY file

210 APPLE PASCAL OPERATING SYSTEM

DISKFILES NEEDED

The following diskfiles allow you to use the utility for changing
GOTOXY communication with the screen.

BINDER.CODE (any diskette, any drive; required
only to start)
SYSTEM.PASCAL (boot diskette, any drive; required
to start)
Codefile containing (any diskette, any drive; required
new GOTOXY procedure throughout; for SOROC IQl2¢ use

SOROCGOTO.CODE; for Hazeltine
15¢¢ use HAZELGOTO.CODE)

OQutput codefile, creates (boot diskette, any drive; required
NEW.PASCAL [36 blocks] throughout; can later be used to
replace SYSTEM.PASCAL)

The file BINDER.CODE is normally found on diskette APPLE3: . When the
utility for changing GOTOXY communication terminates, your boot
diskette should be in the boot drive. If it is not there, the

system will tell you

PUT IN APPLEL:
(if APPLEl: is your boot diskette).
One-drive note: First, use the Filer to T(ransfer APPLE3:BINDER.CODE
and the file containing your new GOTOXY procedure (for a SOROC 1Q12¢,
this would be APPLE3:SOROCGOTO.CODE) onto your boot diskette. You are

then ready to X(ecute BINDER with your boot diskette in the drive.

Two-drive note: You will normally place your boot diskette in the boot
drive, and place APPLE3: in the other drive. You are then ready to
X(ecute APPLE3:BINDER .

EXAMPLE: SETUP FOR SOROC 1120

You are about to create a new boot diskette, so you should first make
a copy of the current boot diskette APPLEl: .

Now, from the Command level, with all the necessary files in the
available disk drives, type X for X(ecute. Answer the question

EXECUTE WHAT FILE?
by typing the file name

APPLE3:BINDER

UTILITY PROGRAM 211

One-drive note: You have T(ransferred BINDER.CODE to your boot
diskette, APPLEl: . You should type

APPLE1:BINDER

(Note that it is not necessary to specify BINDER.CODE ; the .CODE suffix
is automatically added if you don’t type it). The screen will
soon show this title:

APPLE GOTOXY BINDER

The program now looks for the old file SYSTEM.PASCAL, which must be on
your boot diskette in any drive. If you see this message

ERROR: NO FILE SYSTEM.PASCAL
PRESS SPACE TO CONTINUE

your boot diskette was probably not in any drive. You should put your
boot diskette in the boot drive and press the Apple’s spacebar to
return to Command level. Then you can try to X(ecute the program
again.

When the program has successfully found the boot diskette file
SYSTEM.PASCAL , it prompts you to specify the

FILE WHICH CONTAINS GOTOXY?
For this example, you should respond by typing
APPLE3:SOROCGOTO

(for a different terminal, this would be the new GOTOXY procedure you
compiled after modifying SOROCGOTO.TEXT for your terminal). The
program looks first for a file whose filename is exactly as you typed
it. 1If that search is not successful, the suffix .CODE is added to
the filename and the search is made again. When your file is found,
the disks whirr, and messages appear saying

COPYING SEGMENT
COPYING SEGMENT
COPYING SEGMENT
COPYING SEGMENT
COPYING SEGMENT
COPYING SEGMENT
COPYING SEGMENT

5

VU WLWNFES =

and so on. When the COMMAND prompt line reappears, the copy of
APPLEl: has the new file NEW.PASCAL on it. This file is the old
SYSTEM.PASCAL with the new GOTOXY procedure for your terminal bound
into it. Before the system can use this new file, the old file

212 APPLE PASCAL OPERATING SYSTEM

SYSTEM.PASCAL must be removed from the disk (or at least renamed) and
NEW.PASCAL must be given the name SYSTEM.PASCAL . To do this all at
once, type F to enter the Filer, and then type T for T(ransfer.
The following dialog will then do the job:

TRANSFER? NEW.PASCAL
TO WHERE? SYSTEM.PASCAL[36]
REMOVE OLD APPLEl:SYSTEM.PASCAL ? Y
APPLE1:NEW.PASCAL
-=> APPLE1:SYSTEM.PASCAL

(Remember that the Apple produces [by typing CTRL-K, and] by
typing SHIFT-M .) A copy of NEW.PASCAL has now replaced the old
SYSTEM.PASCAL and that copy was renamed at the same time to
SYSTEM.PASCAL .

You can now R(emove the original file NEW.PASCAL from the boot
diskette. Finally, to avoid confusion, C(hange the name of this new
boot diskette from APPLEl: to SOROCl: and label the diskette with this
name.

At this time, you should also replace the file SYSTEM.MISCINFO on
SOROC1l: with the file called APPLE3:SOROC.MISCINFO (for a different
terminal, this would be the NEW.MISCINFO you generated with the SETUP
program, described in the previous section of this chapter, SYSTEM
RECONFIGURATION). This dialog will do it all at once:

TRANSFER? APPLE3:SOROC.MISCINFO
TO WHERE? SOROC1:SYSTEM.MISCINFO[1]
REMOVE OLD SOROC1l:SYSTEM.MISCINFO ? Y
APPLE3:SOROC.MISCINFO

—-> SOROC1:SYSTEM.MISCINFO

Note: the information you have just changed in making SOROCl: will not

affect the system until you reboot the system with SOROCl: in the boot
disk drive.

UTILITY PROGRAM 213

REMOVING LINEFEED FROM RETURN

Various printers used with the Apple Pascal system have different
requirements for dealing with RETURN (carriage return, or ASCII CR)
characters. Some printers require that a linefeed character follow
every RETURN character, while other printers automatically supply
their own linefeed following every RETURN character.

The file which contains the system”s hardware configuration
information, SYSTEM.MISCINFO, does not have any information about the
printer’s requirements. The Apple Pascal system normally sends out a
linefeed after every RETURN character. This matches the requirements
of most printers. However, on some printers this may cause double
spacing between lines, and some printers are unable to work properly
if sent these RETURN+linefeed combinations. For printers that do not
work properly when sent a linefeed after every RETURN character, the
Apple Pascal system provides the Linefeed utility program.

DISKFILES NEEDED

The following diskfile allows you to use the utility program for
preventing a linefeed from being sent to the printer after every
RETURN character.

LINEFEED.CODE (any diskette, any drive; required
only to start; changes memory only,
no change to any permanent file)

The file LINEFEED.CODE is normally found on diskette APPLE3: . When
the Linefeed utility program terminates, your boot diskette should be
in the boot drive. If it is not there, the system will tell you to

PUT IN APPLEL:
(if APPLEl: is your boot diskette).

One-drive note: You can first use the Filer to T(ransfer the file
LINEFEED.CODE from APPLE3: onto your boot diskette. You are then
ready to X(ecute LINEFEED with your boot diskette in the drive. This
works well because the boot diskette (and the necessary file
SYSTEM.PASCAL) is available when you return to COMMAND level after
using the utility.

Two-drive note: You will normally place your boot diskette in the boot

drive, and place APPLE3: in the other drive. You are then ready to
X(ecute APPLE3:LINEFEED .

214 APPLE PASCAL OPERATING SYSTEM

USING THE UTILITY

From command level, with APPLE3: in any available drive, type X for
X(ecute. Answer the question

EXECUTE WHAT FILE?

by typing
APPLE3:LINEFEED

One-drive note: You have T(ransferred LINEFEED.CODE to your boot
diskette, APPLEl: for example. You should therefore type

APPLE1:LINEFEED

(Note that you do not need to specify LINEFEED.CODE ; the .CODE suffix is
automatically added if you forget to type it.) The system then

executes LINEFEED.CODE . No messages are displayed, and the COMMAND
prompt line reappears.

After running this utility, until the next system boot, RESET, or
initialization, a linefeed is no longer sent to the printer after
every RETURN character. This utility can be used to cure double
spacing and other printer troubles associated with linefeeds.

EASIER USE OF THE UTILITY

If you use the same printer constantly, and it always needs to have no
linefeed sent after RETURN characters, you will have to execute
LINEFEED.CODE every time you start the system. You could T(ransfer
LINEFEED.CODE permanently to your boot diskette, and that would
certainly make things simpler, but you would still have to remember to
X(ecute LINEFEED everytime you start the system.

Fortunately, there is an easier way: make yours a "turnkey" system,
which automatically executes LINEFEED.CODE everytime you start the
system. To do this, simply T(ransfer the file LINEFEED.CODE from
APPLE3: to your boot diskette, and then C(hange its filename on the
boot diskette to SYSTEM.STARTUP . That’s all there is to it. Every
time you boot your system using that boot diskette, the file
SYSTEM.STARTUP will be automatically executed.

UTILITY PROGRAM 215

CALCULATOR

This utility turns your Apple into a VERY simple calculator capable of
addition, subtraction, multiplication, and division only. Results are
expressed in scientific notation, rounded to six digits and followed
by a power-of-ten indicator from E37 to E-37. Input numbers must not
be expressed in scientific notation, and should not contain more than
36 digitse.

DISKFILES NEEDED

The following diskfile is needed in order to use the calculator
utility program:

CALC.CODE (any diskette, any drive; required
only to start)

The file CALC-CODE is normally found on diskette APPLE3: . When you
quit the calculator program, or when any error terminates the program,
your boot diskette should be in the boot drive. If it is not there,
the system may "hang" in more or less dramatic ways, or you may see
the message

PUT IN APPLEL:

(if APPLEl: is your boot diskette). Even after correctly responding
to this message, you will oftenm have to re-initialize the system (by
pressing the RESET key) before the system will respond normally to
commands again.

One-drive note: On single~drive systems, the safest approach is to use
the Filer to T(ransfer the file CALC-CODE from APPLE3: onto your boot
diskette before X(ecuting CALC . This is best because the boot
diskette (and the necessary file SYSTEM PASCAL) is available when you
return to COMMAND level after quitting the utility or after any error
terminates the program. However, you can start the calculator utility
with APPLE3: in the drive. When the utility’s first prompt appears,
you should then put your boot diskette in the drive. Be sure the boot
diskette is in the drive before you quit the calculator utility
program, or your system may ''hang'.

Two-drive note: You will normally place your boot diskette in the boot

drive, and place APPLE3: in the other drive. You are then ready to
X(ecute APPLE3: CALC .

216 APPLE PASCAL OPERATING SYSTEM

USING THE UTILITY

From Command level, with APPLE3: in any available disk drive, type X
for X(ecute. When you see this question

EXECUTE WHAT FILE?
respond by typing
APPLE3:CALC

One-drive note: If you have T(ransferred CALC.CODE from APPLE3: to
your boot diskette, as suggested, you will respond by typing (assuming
APPLEl: is your boot diskette, for example)

APPLE1:CALC

(Note that you do not need to specify CALC.CODE ; the .CODE suffix is
added automatically if you don’t type it.) After this response,
CALC.CODE is executed, and this prompt appears just below the top
screen line saying EXECUTE WHAT FILE? :

->

You may now type any simple mathematical expression, using only these
operators:

+ addition

- subtraction

* multiplication
/ division

All multiplications and divisions are carried out before additions and
subtractions are executed. Use parentheses to keep portions of the
expression unambiguous. When the expression is as you want it, press
the RETURN key to see the result. Here are a few illustrative examples:

->(243)*4
2.00PPPEL

->5/8
DIVISION BY ZERO: TRY AGAIN

->19.2357/2873.456
6.69427E-3

—>400.23412.37+45.78-595.98+16.9¢
-1.216@0E2

=>45%=2
"(" MISSING: TRY AGAIN

~>45%(=2)
-9.000@0E1

UTILITY PROGRAM 247

Responding to the prompt => by just pressing the RETURN key
terminates the calculator utility and returns you to the operating

system’s Command level. Be sure your boot diskette is in the boot
drive before you quit the program in this way.

Occasionally, you may run into a problem like this:
->372

UNIMPLEMENTED INSTRUCTION
s# 1, P# 19, I# 92
TYPE <SPACE> TO CONTINUE

After a message like this last one, you should make sure your boot

diskette is in the boot drive, and then press the Apple’s spacebar.
This causes the system to be re-booted, and you can then X(ecute the
calculator utility again.

UTILITIES SUMMARY

FORMATTING NEW DISKETTES
1. X(ecute APPLE3:FORMATTER

2. When asked FORMAT WHICH DISK? , put a new diskette in any drive
and type that drive’s volume number.

3. To quit, press the RETURN key in response to FORMAT WHICH DISK?

THE SYSTEM LIBRARIAN

l. X(ecute APPLE3:LIBRARY

2. When asked for an OUTPUT CODE FILE -> , type a filename for the
new library file. E.g., MYDISK:NEW.LIBRARY

3. When asked for a LINK CODE FILE -> , type the name of the file

which contains the first items to put in the new library. E.g.,
APPLE1 : SYSTEM.LIBRARY

4. To transfer an item from the source Link Code File to the new
library Output Code File, type the item’s Link Code File slot
number (@ to 15) and press the spacebar. When asked SLOT TO LINK

INTO? , type the number of the slot you want the item to occupy in
the Output Code File and press the spacebar.

5. Type N to begin taking items from a N(ew Link Code File.

218 APPLE PASCAL OPERATING SYSTEM

6. When all desired items have been transferred to the new library,
lock the new library by typing Q for Q(uit. When asked NOTICE? ,
type a copyright message or press RETURN.

7. To use the new library, it must be placed on your boot diskette
and it must be named SYSTEM.LIBRARY

LIBRARY MAPPING

l. X(ecute APPLE3:LIBMAP

2. When prompted to ENTER LIBRARY NAME: , type the name of the

library or other code file whose contents you wish to see mapped.
E.g., APPLEl:SYSTEM.LIBRARY

3. When asked LIST LINKER INFO TABLE? , press the spacebar or RETURN
key unless you want that information.

4. When prompted for a MAP OUTPUT FILE NAME: , type the name of the
diskette file or other device to which you wish the map sent.
Just pressing the RETURN key sends the map to CONSOLE: .

5. When prompted again to ENTER LIBRARY NAME: , type the name of the
next library file whose contents you wish mapped, or press the
RETURN key to quit the program.

SYSTEM RECONFIGURATION

l. To use your system with an external terminal, make a copy of
APPLEl: for use as your new boot diskette. Give this new boot
diskette a different name, such as SOROCl: or BRIAN: .

2. 1f your terminal is a Soroc IQl2@, T(ransfer APPLE3:SOROC.MISCINFO
to your new boot diskette and change its filename to SYSTEM.MISCINFO

If your terminal is a Hazeltine 15@¢@, T(ransfer APPLE3:HAZEL.MISCINFO
to your new boot diskette and change its filename to SYSTEM.MISCINFO

If your terminal is neither of the above, X(ecute APPLE3:SETUP ,
and let the program T(each you how to C(hange the parameters to

suit your terminal. When the parameters are set correctly, Q(uit
and do a D(isk update. This creates the file NEW.MISCINFO on your

boot diskette. Then E(xit the program. Finally, you must

T(ransfer NEW.MISCINFO to your new boot diskette and change this
file’s name to SYSTEM.MISCINFO

3. Read the next section, which tells how to change the GOTOXY Pascal
procedure to work correctly with your terminal.

UTILITY PROGRAM 219

CHANGING GOTOXY COMMUNICATION

1. Read the previous section on reconfiguring your system to suit
your external terminal.

2. X(ecute APPLE3:BINDER

3. When you are asked FILE WHICH CONTAINS GOTOXY? , type the name of
the codefile containing the new GOTOXY procedure for your terminal.
One-drive note: this file must be on your boot diskette.

If your terminal is a Soroc IQl2@, type APPLE3:SOROCGOTO
If your terminal is a Hazeltine 15@@, type APPLE3:HAZELGOTO

If your terminal is neither of the above, type the name of the
codefile containing a new GOTOXY procedure that you modified from
APPLE3:SOROCGOTO.TEXT to suit your terminal and then compiled.

4. This program creates the file NEW.PASCAL on your boot diskette.
You must now T(ransfer NEW.PASCAL onto the new boot diskette

created in the previous section, and change the name of this file
to SYSTEM.PASCAL . Your system will discover the new files
SYSTEM.MISCINFO and SYSTEM.PASCAL the next time you boot with your
new boot diskette.

REMOVING LINEFEED FROM RETURN

1. The Apple Pascal system automatically supplies a linefeed after
every RETURN character sent to the printer. If your printer does
not work correctly with this arrangement, X(ecute APPLE3:LINEFEED

2. Until the next boot, RESET, or initialization, no linefeed will be
sent to the printer after RETURN characters.

3. You may wish to put LINEFEED.CODE on your boot diskette, and

change its name to SYSTEM.STARTUP Then this utility will be
executed automatically, each the system is booted.

220 APPLE PASCAL OPERATING SYSTEM

CALCULATOR

1.

3.

X(ecute APPLE3:CALC

When you are prompted => , type any mathematical expression
involving decimal numbers with fewer than 36 digits, and the
operators + - * / Use parentheses (and) to keep
expressions unambiguous. Example:

=>(2.324+.029)*(~1.75/4394.17)
Press the RETURN key to see the result of evaluating the
expression, expressed in scientific notation with six digits and a
power-of-ten indicator. Result of above example:
~9.355@1E~4
=4
In other notation, =9.355@1E-4 = =9.355@01*%(1¢) = -.@@@P935501

To quit, press RETURN when prompted ->

UTILITY PROGRAM 221

222 APPLE PASCAL OPERATING SYSTEM

APPENDIX A

224
224

224
225

226
227
229
229
229
230
230
231
231
231
232
232
232

233
233
233
234
235
235
. 236
236
237
238
238
239
239
239
240
242

243

244
245

TECHNICAL INFORMATION
Introduction
Hardware Emulation: Registers
Communication between Operating
System and the P-Machine
Error Handling
Operand Formats
THE P-MACHINE INSTRUCTION SET
Instruction Formats
Conventions and Notation
One-Word Loads and Stores
Constant
Local
Global
Intermediate
Indirect
Extended
Multiple~Word Loads and Stores
(sets and reals)
Byte Array Handling
String Handling
Record and Array Handling
Dynamic Variable Allocation
Top~of-Stack Arithmetic
Integers
Non~Integer Comparisons
Reals
Strings
Logical
Sets
Byte Arrays
Records and Word Arrays
Jumps
Procedure and Function Calls
System Support Procedures
Byte~Array Procedures
Compiler Procedures
Miscellaneous

TECHNICAL INFORMATION
INTRODUCTION

The Apple Pascal "Pseudo-machine', or "P-machine", a version of the
UCSD Pascal P-machine, is the software-generated "device" which
executes P-code as its "machine" language. Every computer operating
under a form of UCSD Pascal has been programmed to "look like" this
common P-machine, from the viewpoint of a program being executed.
The P-machine supports the following:

l. Variable addressing, including strings, byte arrays, packed
fields, and dynamic variables

2. Logical, integer, real, set, array, and string top-of-stack
arithmetic and comparisons

3. Multi-element structure comparisons
4. Several types of branches

5. Procedure and function calls and returns, including
overlayable procedures

6. Miscellaneous procedures used by systems programs

This appendix, to be used in conjunction with the next appendix
OPERATION OF THE P-MACHINE, describes the P-machine "hardware,"
communication with the operating system, error handling, and the
mnemonic instruction set.

HARDWARE EMULATION: REGISTERS

The P-machine uses 16-bit words, with two 8-bit bytes per word. It has
an evaluation stack, several registers, and a user memory containing a
program stack and a heap. All registers are pointers to word-aligned
structures, except IPC, which is a pointer to byte-aligned instructions.
The registers, sometimes referred to as '"pseudo-variables", are:

SP: evaluation Stack Pointer. A pointer to the current "top'" of the
evaluation stack (one byte beyond the last byte in use). In the
Apple, the evaluation stack uses a portion of the 65@2°s hardware
stack, starting in hex memory location lFF and growing down toward
hex location 1¢@. It is used to pass parameters, return function
values, and as an operand source for many instructions. The
evaluation stack is extended by loads, and is cut back by stores
and arithmetic operations.

IPC: Interpreter Program Counter. Contains the address of the next

instruction to be executed, in the code segment of the currently
executing procedure.

224 APPLE PASCAL OPERATING SYSTEM

SEG: SEGment pointer points to the procedure dictionary of the segment
to which the currently executing procedure belongs. (See this
manual’s appendix OPERATION OF THE P-MACHINE for illustrations.)

JTAB: Jump TABle pointer. A pointer to the table of attributes and
jump table entries in the procedure code section of the currently
executing procedure. (See this manual’s appendix OPERATION OF THE
P-MACHINE for illustrations.)

KP: program stacK Pointer. A pointer to the current top of the
program stack. The program stack starts in high user memory and
grows downward toward the heap. (See this manual’s appendix
OPERATION OF THE P-MACHINE for illustrations.)

MP: Markstack Pointer. A pointer to the low byte of MSSTAT, in the
topmost Markstack on the program stack, in the activation record of
the currently executing procedure. Variables local to the current
procedure are accessed by indexing off MP.

NP: New Pointer. A pointer to the current top of the dynamic heap
(one byte beyond the last byte in use). The heap starts in low user
memory and grows upward toward the program stack. It contains all
dynamic variables (see Jensen and Wirth, Chapter 1¢). It is
extended by the standard procedure “new’, and is cut back by the
standard procedure ‘release’.

BASE: BASE Procedure. A pointer to the activation record of the most
recently invoked base procedure (lex level). Global (lex level @)
variables are accessed by indexing off BASE.

COMMUNICATION BETWEEN OPERATING
SYSTEM AND THE P-MACHINE

It is sometimes necessary for the operating system and the P-machine
to exchange information. Hence there exists a variable SYSCOM in the
outer block of the operating system, and a corresponding area in
memory known to the P-machine. The fields in SYSCOM actually relevant
to this communication are:

IORSLT: Contains the error code returned by the last activated or
terminated 1/0 operation (see I1/0 Error Messages in this manual’s
TABLES appendix, and the Apple Pascal Language Reference Manual’s
description of Apple Pascal’s read and write procedures).

XEQERR: Contains the error code of the last execution error (see
the Error Handling® section in this appendix, and Execution Error

Messages in the TABLES appendix).

SYSUNIT: Contains the volume number of the device from which the
operating system was booted (usually the boot disk drive, volume 4).

BUGSTATE: (Not used; intended for future debugging routines.)

ARCHITECTURE OF P-MACHINE 225

GDIRP: Contains a pointer to the most recent disk directory read

in, unless dynamic allocation or deallocation has taken place
since then (see the MRK, RLS, and NEW instructions).

STKBASE, LASTMP, SEG, JTAB: Contains copies of the BASE, MP, SEG and
JTAB registers.

BOMBP : Contains a pointer to the activation record of the operating
system routine EXECERROR when an execution error occurs (see the
Error Handling section of this appendix).

BOMIPC: Contains the value of IPC when an execution error occurs.
HLTLINE: (Not used; intended for future debugging routines.)

BRKPTS: (Not used; intended for future debugging routines.)
CRTINFO.EOQF: Contains the end-of-file character (see discussion of the

reconfiguration program in this manual’s chapter UTILITY PROGRAMS).

CRTINFO.FLUSH: Contains the flush-output character (see the discussion
of the reconfiguration program in the chapter UTILITY PROGRAMS).

CRTINFO.STOP: Contains the stop-output character (see discussion of the
reconfiguration program in this manual’s chapter UTILITY PROGRAMS).

CRTINFO.BREAK: Contains the break-execution character (see discussion
of the reconfiguration program in the chapter UTILITY PROGRAMS).

SEGTABLE: Contains the segment dictionary for the operating system
(segments @, and 2 through 6) and for the currently executing system
or user program (segment l: main program; 7 through 21: segment
procedures and regular Units; 22 through 31: Intrinsic Units)

(see the appendix OPERATION OF THE P-MACHINE for illustrations).

ERROR HANDLING

Whenever an execution error occurs, the P-machine stops executing the
current instruction (ideally leaving the evaluation stack in as nice a
condition as possible) and transfers control to the interpreter’s XEQERR
routine. This routine does the following:

1. Enters the error code into SYSCOM™.XEQERR ,

2. Calculates what MP will be after step 4, and sets SYSCOM™.BOMBP
to that (the size of EXECERROR’s activation record must be
known by the P-machine),

3. Stores the current value of IPC into SYSCOM™.BOMIPC ,

4. Points IPC to a CXP §,2 P-code instruction (call operating
system procedure EXECERROR) and

5. Resumes execution of interpreter code, starting with the CXP .

226 APPLE PASCAL OPERATING SYSTEM

OPERAND FORMATS

Although an element of a structure may occupy as little as ome bit,
in a PACKED ARRAY OF boolean, variables in the P-machine are always
aligned on word boundaries. Words consist of two bytes of which the
address byte is least significant. All top-of-stack operations
expect their operands to occupy at least one word on the evaluation
stack, even if not all the information in a word is valid. The

least significant bit of a word is bit ¢, the most significant is
bit 15.

BOOLEAN: One word. Bit ¢ indicates the value (false=@, true=l),
and this is the only information used by boolean comparisons.

as

even-

However, the boolean operators LAND, LOR, and LNOT operate on all

16 bits.

INTEGER: One word, two’s complement, capable of representing values

in the range -32768..32767.

LONG INTEGER: 3..11 words. A variable declared as INTEGER[n] is

allocated ((n+3) DIV 4) + 2 words. Regardless of the value of the

integer, its actual size agrees with its allocated size. Each

decimal digit of a long integer is stored as four bits of Binary

Coded Decimal. The format of long integers is as follows:

word n (tos=-n): high byte contains the two least significant

decimal digits (BCD).
" 11} " " " " "
" " " " " " " " ”

word 2 (tos-2): low byte contains the two most significant

decimal digits (BCD).

word 1 (tos=1): low byte contains the sign (all zeros=plus,

all ones = minus); high byte not used.

word ¢ (tos-@): contains the allocated length, in words.

SCALAR (user-defined): One word, in range ¢f..32767.

CHAR: One word, with low byte containing character. The internal
character set is "extended" ASCII, with (..127 representing the

standard ASCII set, and 128..255 as a user-defined character set.

REAL: Two words, whose format is implementation dependent. The system

is arranged so that only the interpreter needs to know the
detailed internal format of REALs (beyond the fact that they

occupy two words). In general, the format for 32-bit real
numbers is as follows:

Word 1 (tos) Word ¢ (tos)
A
r N
Bit: 31 3¢...23 22..16 and 15..0
Item: Sign Exponent Mantissa

ARCHITECTURE OF P-MACHINE 227

POINTER: One or three words, depending on type of pointer.

SET:

Pascal pointers, internal word pointers: one word, containing
a word address.

Internal byte pointers: one word, containing a byte address.

Internal packed field pointers: three words.
word 2 (Tos-2): word pointer to word field is in.
word 1 (Tos-1): field width (in bits).
word @ (Tos-@): right bit number of field.

@#..31 words in activation record, l..32 words on evaluation
stack. Sets are implemented as bit vectors, always with a lower
index of zero. A set variable declared as SET OF m..n is
allocated (n+15) DIV 16 words. When a set is in the activation
record, all words allocated contain valid information (the set’s
actual size agrees with its allocated size).

When a set is on the evaluation stack, it is represented by a word
containing the length (tos), and then that number of words of
information. The set may be padded with extra words (to compare
it with another set of different size, say), the length word
indicating the number of words in the structure padded. Before
being stored back in the activation record, a set must be forced
back to the size allocated to it, by issuing an ADJ instruction.

RECORDS and ARRAYS: Any number of words. Arrays are stored in forward

order, with higher-indexed array elements appearing in higher-
numbered memory locations. Only the address of the record or array
is loaded onto the evaluation stack, never the structure itself.
Packed arrays must have an integral number of elements in each
word, as there is no packing across word boundaries (it is
acceptable to have unused bits in each word). The first element in
each word has bit @ as its low-order bit.

STRINGS: 1..128 words. Strings are a flexible version of PACKED

ARRAYs OF char. A string[n] occupies (n DIV 2)+l1 words. Byte ¢
of a string is the current length of the string, and bytes
l..length(string) contain valid characters.

CONSTANTS: Constant scalars, sets, and strings may be imbedded in

228

the instruction stream, in which case they have special formats.

All scalars (excluding reals) greater than 127: Two bytes,
high byte first.

Strings: All string literals take length(literal)+l bytes, and
are word aligned. The first byte is the length, the rest are the
actual characters. This format applies even if the literal should
be interpreted as a PACKED ARRAY OF CHAR.

Reals and sets: Word aligned, and in REVERSE word order.

APPLE PASCAL OPERATING SYSTEM

THE P-MACHINE INSTRUCTION SET
INSTRUCTION FORMATS

Instructions on the P-machine are one or two bytes long, followed by
zero to four parameters. Most parameters specify one word of
information, and are one of five basic types:

UB: Unsigned Byte. High order byte of parameter is implicitly zero.
SB: Signed Byte. High order byte is sign extension of bit 7.

DB: Don’t-care Byte. Can be treated as SB or UB, as value is always
in the range ¢..127.

B: Big. This parameter is one byte long when used to represent
values in the range (..127, and is two bytes long when
representing values in the range 128..32767. If the first
byte is in ¢..127, the high byte of the parameter is
implicitly zero. Otherwise, bit 7 of the first byte is
cleared and it is used as the high order byte of the
parameter. The second byte is used as the low order byte.

W: Word. The next two bytes, low byte first, give the parameter value.

Any exceptions to these formats are noted in the instruction descriptions.

CONVENTIONS AND NOTATION

The program stack, which starts at user high memory and grows downward,
contains program code segments and activation records for currently
active procedures, and data segments associated with INTRINSIC UNITs.

The evaluation stack, which starts at hex location 1FF and grows
downward toward hex 1@}, contains operands and other temporary items
needed during expression evaluation. When an instruction is said to
"push" an item, that item is placed on the top of the evaluation stack
(remember that the evaluation stack grows downward).

In referring to operands on the evaluation stack (for example, tos or
tos-1), each operand can contain from one word to 256 words, depending
on the context. Also, unless specifically noted to the contrary,
operands used by an instruction are popped off the evaluation stack
(removed from the stack and not put back there) as they are used.

Abbreviations are used widely, but use fairly simple conventions.
Parameters are written as X or Xn , where X is UB , SB , DB , B ,
or W, and n is an integer indicating the parameter position in the
instruction (used in the descriptions to differentiate between several
parameters that would otherwise have the same name). The term tos
means the operand on the top of the evaluation stack, tos-1 is the
next operand, etc. The Mark Stack Control Word, or MSCW, is simply
called the Markstack.

ARCHITECTURE OF P-MACHINE 229

Many instructions refer to the activation record of a procedure, and
this appendix assumes the reader has a general knowledge of procedure-
calling in stack machines, and the concept of stack frames. An
activation record as defined in this appendix specifically consists of:

1) the local variables for the procedure,
2) parameters passed to the procedure at the time of its invocation,

3) space for storing the value returned by the procedure, if the
procedure is a function, and

4) the Markstack, containing addressing information (Static Links),
and information on the calling procedure’s environment when the
procedure was called (see this manual’s appendix, OPERATION OF
THE P-MACHINE, for illustrations).

The dynamic chain refers to the calling chain, traversed using the
Markstack Dynamic Links (MSCW.MSDYN). The static chain refers to the
lexical or ancestor chain, traversed using the Markstack Static Links
(MSCW.MSSTAT) .

The columns of information in the various instruction descriptions may
be labelled as follows:

Column Column Column Column

1 2 3 4
Op-Code Decimal Instruction Full Name and Operation
Mnemonic Op-Code Parameters of the Instruction

ONE-WORD LOADS AND STORES

Constant
SLDC ¢ (1] Short load one-word constant. For an
SLDC 1 1 instruction SLDC x , push the opcode, x ,

s H s with high byte zero.
SLDC 127 127
LDCN 159 Load constant NIL. Push the implementa-

tion-dependent value of NIL (@, on the Apple).

LDCI 199 Y Load one-word constant. Push W.

230 APPLE PASCAL OPERATING SYSTEM

Local

SLDL 1
SLDL 2

SLDL 16

LDL

LLA

STL

Global

SLDO 1
SLDO 2

SLDO 16
LDO

LAO

SRO

Intermediate

LOD

LDA

STR

216
217

231
292
198
204

232
233

247
169

165

171

182

178

184

DB,B

DB,B

DB,B

Short load local word. For an
instruction SLDL x , fetch the word with
offset x din MP activation record and
push it.

Load local word. Fetch the word with

offset B in MP activation record and
push ite.

Load local address. Fetch address of
the word with offset B in MP activation
record and push it.

Store local word. Store tos into word
with offset B in MP activation record.

Short load global word. For an
instruction SLDO x , fetch the word with
offset x in BASE activation record and
push it.

Load global word. Fetch the word with
offset B in BASE activation record and
push it.

Load global address. Fetch address
of word with offset B in BASE activation
record and push it.

Store global word. Store tos into word
with offset B in BASE activation record.

Load intermediate word. Fetch word with
offset B in the activation record found
by traversing DB Static Links, and push it.

Load intermediate address. Fetch address
of word with offset B in the activation
record found by traversing DB Static Links,
and push it.

Store intermediate word. Store tos into

the word with offset B in activation record
found by traversing DB Static Links.

ARCHITECTURE OF P-MACHINE 2341

Indirect

SIND ¢ 248 Load indirect word. Fetch the word
pointed to by tos and push it (this is
a special case of SIND x , described below).

SIND 1 249 Short index and load word. For an
SIND 2 25¢ instruction SIND x , index the word pointer
I : tos by x words, and push the word pointed
SIND 7 255 to by the result.
IND 163 B Static index and load word. Index
the word pointer tos by B words, and
push the word pointed to by the result.
STO 154 Store indirect word. Store tos into

the word pointed to by tos-1 .

Extended

LDE 157 UB,B Load extended word. Fetch the word
with offset B in data segment UB
(from an Intrinsic Unit) and push it.

LAE 167 UB,B Load extended address. Fetch address
of the word with offset B in data segment
UB (from an Intrinsic Unit), and push it.

STE 209 UB,B Store extended word. Store tos
into the word with offset B in data
segment UB (from an Intrinsic Unit).

MULTIPLE-WORD LOADS AND STORES
(REALS AND SETS)

LDC 179 UB,<block> Load multiple-word constant. Fetch
word-aligned <block> of UB words in
reverse word order, and push the block.

LDM 188 UB Load multiple words. Fetch a block
of UB words, whose beginning is pointed
to by tos , and push the block.

STM 189 UB Store multiple words. Tos is a block
of UB words, tos-1 is a word pointer to a
similiar block. Transfer the block from tos
to the destination block pointed at by tos-l.

232 APPLE PASCAL OPERATING SYSTEM

BYTE ARRAY HANDLING

LDB 19¢ Load byte. Index the byte pointer
tos-1l by the integer index tos , and
push the byte (after zeroing high byte)
pointed to by the resulting byte pointer.

STB 191 Store byte. Index the byte pointer
tos-2 by the integer index tos-1 , and
push the byte tos into the location
pointed to by the resulting byte pointer.

STRING HANDLING

LSA 166 UB,<chars> Load constant string address. Push a
byte pointer to the location containing
UB, and then skip IPC past <chars>.

SAS 17¢ UB String assign. Tos is either a source
byte pointer or a character. (Characters
always have a high byte of zero, while
pointers never do.) Tos-1 is a destination
byte pointer. UB is the declared size of
the destination string. If the declared
size is less than the current size of the
source string, give an execution error;
otherwise transfer all bytes of source
containing valid information to the
destination string.

IXS 155 Index string array. Index the byte
pointer tos-1 by the integer index tos ,
and push the resulting byte pointer if
it is in the range l..current length.

If not, give an execution error.

RECORD AND ARRAY HANDLING

MOV 168 B Move words. Transfer a source block of
B words, pointed to by byte pointer tos ,
to a similar destination block pointed to by
byte pointer tos-1 .

INC 162 B Increment field pointer. Index the

word pointer tos by B words and push
the resultant word pointer.

ARCHITECTURE OF P-MACHINE 233

IXA

IXP

LPA

LDP

STP

164

192

2¢8

186

187

UB1,UB2

Index array. Tos is an integer index,
tos-1 is the array base word pointer, and
B is the size (in words) of an array
element. Compute a word pointer to the
indexed element and push the pointer.

Index packed array. Tos is an
integer index, tos-l is the array base
word pointer. UBLl is the number of
elements per word, and UB2 is the field
width (in bits). Compute a packed field
pointer to the indexed field and push the
resulting pointer.

UB,<chars> Load a packed array. Push a byte

pointer to the first location following

the one that contains UB , and then
skip IPC past <chars>.

Load a packed field. Fetch the field
indicated by the packed field pointer tos ,
and push it.

Store into a packed field. Store the
data tos into the field indicated by the
packed field pointer tos-1 .

DYNAMIC VARIABLE ALLOCATION

NEW

MRK

RLS

158 1

158 31

158 32

New variable allocation. Tos is the
size (in words) to allocate the variable,
and tos~l 1is a word pointer to a dynamic
variable. GDIRP is a pointer to a temporary
directory buffer placed in memory directly
above the heap. If GDIRP is non-NIL,
set GDIRP to NIL. Store NP into the
word pointed to by tos-l , and increment
NP by tos words.

Mark heap. Set GDIRP to NIL if
necessary; then store NP into
the word indicated by word pointer tos .

Release heap. Set GDIRP to NIL,
then store the word indicated by the
word pointer tos into NP .

234 APPLE PASCAL OPERATING SYSTEM

TOP-OF-STACK ARITHMETIC

Integers

Note: Overflows do not cause an execution error.

ABI 128 Absolute value of integer. Push the
absolute value of integer tos . Result is
undefined if tos dis initially -32768.

ADI 13¢ Add integers. Add tos and tos-1
and push the resulting sum.

NGI 145 Negate integer. Push the two’s
complement of tos .

SBI 149 Subtract integers. Subtract tos from
tos-1 , and push the resulting difference.

MPI 143 Multiply integers. Multiply tos and
tos-1 , and push the resulting product. This
instruction may cause an overflow if the
result is larger than 16 bits.

SQI 152 Square integer. Square tos , and push
the result. May cause overflow if result is
larger than 16 bits.

DVI 134 Divide integers. Divide tos-l by tos
and push the resulting integer quotient (any
remainder is discarded).

MODI 142 Modulo integers. Divide tos-=1 by tos
and push the resulting remainder (as defined
in Jensen and Wirth).

CHK 136 Check against subrange bounds. Insure
that tos-1 <= tos-2 <= tos , leaving tos-2
on the stack. If conditions are not
satisfied, give an execution error.

EQUI 195 Tos=1 = tos .
NEQI 203 Tos~1 <> tos .
LEQI 200 Tos=1 <= tos .
LESI 201 Tos=1 < tos .
GEQIL 196 Tos~1l >= tos .
GRTI 197 Tos=-1 > tos .

Integer comparisons. Compare tos-1 to tos
and push the result, TRUE or FALSE.

ARCHITECTURE OF P-MACHINE 235

Non-Integer Comparisons

EQU 175
NEQ 183
LEQ 18¢
LES 181
GEQ 176
GRT 177
Reals

UB
UB
UB
UB
UB
UB

Tos-1 = tos .

Tos-1 <> tos .

Tos=1l <= tos .

Tos=-1 < tos .

Tos=-1 >= tos .

Tos-1 > tos .
Compare tos-l1 to tos , and push the
result, TRUE or FALSE. The type of
comparison is specified by UB :

Contents of Value of UB
Tos-1 & tos for comparison

reals

strings

booleans

sets

byte arrays 1
words 1

L SR e

Comparisons using specific values of UB
are shown in the following instruction
descriptions.

Note: All over/underflows cause an execution error.

FLT

FLO

TNC

236

138

137

158 22

158 23

129

Float top-of-stack. Convert the integer
tos to a floating point number, and push
the result.

Float next to top-of-stack. Tos is a

real, tos-l1 is an integer. Convert tos-1
to a real number, and push the result.

Truncate real. Truncate (as defined in
Jensen and Wirth) the real tos and convert
to an integer, and then push the result.

Round real. Round (as defined in Jensen
and Wirth) the real tos , then truncate and

convert to an integer, and finally push the
result.

Absolute value of real. Push the
absolute value of the real tos .

APPLE PASCAL OPERATING SYSTEM

NGR
SBR
MPR
SQR
DVR

POT

EQUREAL
NEQREAL

LEQREAL
LESREAL

GEQREAL
GTRREAL

Strings

EQUSTR
NEQSTR
LEQSTR
LESSTR
GEQSTR
GRTSTR

131

146

15¢

144

153

135

158

175
183

18¢
181
176
177

175
183
18¢
181
176
177

35

NN NN

B IR R S

Add reals. Add tos and tos-1 , and
push the resulting sum.

Negate real. Negate the real tos , and
push the result.

Subtract reals. Subtract tos from
tos-1 , and push the resulting remainder.

Multiply reals. Multiply tos and tos-l,
and push the resulting producte.

Square real. Square tos , and push the
result.

Divide reals. Divide tos-1 by tos ,
and push the resulting quotient.

Power of ten. If the integer tos is
in the range @ <= tos <= 38 , push the real
(and thus implementation-dependent) value
1§ ~ tos . If not, give an execution error.
This facility allows the rest of the system
to be independent of floating point format.

Tos-1 = tos .

Tos=1 <> tos .

Tos=1 <= tos .«

Tos=-1 < tos .

Tos=1 >= tos .«

Tos-1 > tos .
Real comparisons. Compare the real tos-1
to the real tos , and push the result,
TRUE or FALSE.

Tos-1 = tos .

Tos=1 <> tos .

Tos~=1 <= tos .

Tos=1 < tos .

Tos=1l >= tos .

Tos-1 > tos .
String comparisons. Find the string pointed
to by word pointer tos-l , compare it
lexicographically to the string pointed to
by word pointer tos , and push the result,
TRUE or FALSE.

ARCHITECTURE OF P-MACHINE 237

Logical

LAND
LOR
LNOT

EQUBOOL
NEQBOOL

LEQBOOL

LESBOOL
GEQBOOL
GRTBOOL

Sets

ADJ

SGS

SRS

INN

INT

132

141

147

175
183

189

181
176

177

160

151

148

139

156

140

oo ooy

UB

Logical and. Push the result of
tos-1 AND tos .

Logical or. Push the result of
tos-1 OR tos .

Logical not. Push the one’s complement
of tos .

Tos=1 = tos .

Tos=1 <> tos .

Tos=1 <= tos .

Tos-1 < tos .

Tos=1 >= tos .«

Tos-1 > tos .
Boolean comparisons. Compare bit ¢ of
tos=l to bit ¢ of tos and push the
result, TRUE or FALSE.

Adjust set. Force the set tos to occupy
UB words, either by expansion (putting zeroes
"between" tos and tos-1) or compression
(chopping of high words of set), discard the
length word, and push the resulting set.

Build a singleton set. If the integer
tos is in the range @ <= tos <= 511 ,
push the set [tos] . If not, give an
execution error.

Build a subrange set. If the integer
tos is in the range @ <= tos <= 511 , and

the integer tos-1 is in the same range,
push the set [tos-l..tos] (push the set []
if tos-1 > tos). If either integer exceeds

the range, give an execution error.

Set membership. If integer tos-1 is
in set tos , push TRUE. If not, push FALSE.

Set union. Push the union of sets tos
and tos-1 . (tos OR tos-1)

Set intersection. Push the intersection
of sets tos and tos-1 . (tos AND tos-1)

238 APPLE PASCAL OPERATING SYSTEM

DIF 133 Set difference. Push the difference of
sets tos-1 and tos . (tos-1 AND NOT tos).

EQUPOWR 175
NEQPOWR 183
LEQPOWR 189
GEQPOWR 176

Tos~-1 = tos .

Tos-1 <> tos .

Tos-1 <= (subset of) tos .

Tos-1 >= (superset of) tos .
Set comparisons. Compare set tos-1 to the
set tos , and push the result, TRUE or FALSE.

oo 00 O ®©

Byte Arrays

EQUBYT 175 1¢
NEQBYT 183 1¢
LEQBYT 180 1¢
LESBYT =~ 181 1¢
GEQBYT 176 16
GRTBYT 177 19

Tos-1 = tos .

Tos-1 <> tos .

Tos-1 <= tos .

Tos-1 < tos .

Tos-1 >= tos .

Tos-1 > tos .
Byte array comparisons. Compare byte array
tos-1 to byte array tos , and push the
result, TRUE or FALSE. <=, <, >=, and > must
be used with PACKED ARRAYs OF CHAR, only.
B gives the number of bytes to compare.

W W w

v v v v w e

Records and Word Arrays

EQUWORD 17512 , B Tos-1 = tos .

NEQWORD 183 12 , B Tos-1 <> tos .
Word or multiword structure comparisons.
Compare word structure tos-1 to word
structure tos , and push the
result, TRUE or FALSE. B gives
the number of bytes to compare.

JUMPS

Simple (non-case statement) jumps are all two bytes long. The first
byte is the op-code, the second is a SB jump offset. If this offset
is non-negative, it is simply added to IPC. (A value of zero for the
jump offset will make any jump a two-byte NOP.) If SB 1is negative,
then SB DIV 2 1is used as a word offset into JTAB, and IPC is set to
the byte address (JTAB™([SB DIV 2]) - contents of (JTAB[SB DIV 2]).

uJp 185 SB Unconditional jump. Jump as
described above.

FJP 161 SB False jump. Jump if tos 1is FALSE.

ARCHITECTURE OF P-MACHINE 239

EFJ 211 SB Equal false jump. Jump if integer
tos-1 <> integer tos .

NFJ 212 SB Not equal false jump. Jump if integer
tos-1 = integer tos .

XJP 172 W1l,W2,W3, <case table>

Case jump. Wl is word-aligned, and
is the minimum index of the table. W2 is
the maximum index. W3 is an unconditional
jump instruction past the table. The case
table is (W2 = Wl + 1) words long, and
contains self-relative locations.

If tos , the actual index, is not in
the range Wl..W2 , then point IPC at W3 .
Otherwise, use (tos - Wl) as an index into
the case table, and set IPC to the byte
address (casetable[tos=Wl]) minus the
contents of (casetable[tos-Wl]).

PROCEDURE AND FUNCTION CALLS

The general scheme used in procedure/function invocation is

1) Find the procedure code section for the called procedure.
From the table of attributes (JTAB) in the called procedure’s
code section, find the data size and parameter size of the
called procedure (for more details, see this manual’s appendix,
OPERATION OF THE P-MACHINE).

2) Extend the program stack by a number of bytes equal to the
data size plus the parameter size.

3) Copy a number of bytes equal to the parameter size, from the
evaluation stack’s tos (pointed to by SP) to the beginning
of the space just allocated. This passes parameters to the
new procedure from its caller.

4) Build a Markstack, saving SP, IPC, SEG, JTAB, MP, and a Static
Link pointer to the most recent activation record of the called

procedure’s immediate parent.

5) Calculate new values for SP, IPC, JTAB, MP, and if necessary,
SEG. Check for program stack overflow.

6) If the called procedure has a lex level of -1 or ¢ save BASE
on the evaluation stack and calculate a new BASE.

7) Save KP on the program stack and calculate a new KP.

240 APPLE PASCAL OPERATING SYSTEM

CLP

CGP

CIP

CBP

CXP

296

2¢7

174

194

205

UB

UB

UB

UB

UB1,UB2

Call local procedure. Call procedure
UB , which is an immediate child of the
currently executing procedure and in the
same segment. Static Link of Markstack
is set to old MP.

Call global procedure. Call procedure
UB , which is at lex level 1 and in the same
segment as the currently executing procedure.
Static Link of the Markstack is set to BASE.

Call intermediate procedure. Call
procedure UB in same segment as the
currently executing procedure. The Static
Link of the Markstack is set by looking up
the call chain until an activation record
is found whose caller had a lex level one
less than the procedure being called. Use
that activation record’s Static Link as
the Static Link of the new Markstack.

Call base procedure. Call procedure
UB , which is at lex level -1 or (. The
Static Link of the Markstack is set to the
Static Link in BASE’s activation record.
The BASE is saved, after which it is
pointed at the activation record just
created.

Call external procedure. Call procedure
UB2 , in segment UBl . Used to call
any procedure not in the same segment
as the calling procedure, including
procedures at lex level -1 or @. It works
as follows:

1) Is desired segment in memory?

2a) No: read in segment from disk
using the information in the SEGTABLE,
then build an activation record.

2b) Yes: build activation record
normally.

3) Calculate the Static Link for
the Markstack: if the called procedure has
a lex level of -1 or @, set as in CBP;
otherwise set as in CIP.

ARCHITECTURE OF P-MACHINE 241

CSP 158 UB Call standard procedure. Call the
standard Pascal procedure UB , where
UB 1is used as an index into the CSP
table in the interpreter. All instructions
with decimal op-code 158 are examples
of procedure calls using the CSP
instruction.

RNP 173 DB Return from non-base procedure. DB
is the number of words that should be
returned as a function value (@ for
procedures, 1 for non-real functions, and
2 for real functions). Copy DB words
from the bottom of the current procedure’s
activation record, and push them onto the
evaluation stack. Then use the information
in the current Markstack to restore the
calling procedure’s correct environment.

RBP 193 DB Return from base procedure. Move the
saved base into BASE, and then proceed as
in the RNP instruction.

EXIT 158 4 Exit from procedure. Tos is the
procedure number, tos=l is the segment
number. First, set IPC to point to
the exit code of the currently
executing procedure. Then, if the
current procedure is the one to exit
from, return control to the instruction
fetch loop.

Otherwise, change the IPC of each
Markstack to point to the exit code of the
procedure that invoked it, until the desired
procedure is found.

If at any time the saved IPC of main

body of the operating system is about to
be changed, give an execution error.

SYSTEM SUPPORT PROCEDURES

Note: See the Apple Pascal Language Reference Manual for a more detailed
description of these procedures.

242 APPLE PASCAL OPERATING SYSTEM

Byte-Array Procedures

FLC 158 1¢ Fillchar(dst, len, char). Tos (char)
is the source character. Tos-1 (len) is the
number of bytes in the destination array
which are to be filled with the source char.
Tos-2 (dst) is a byte pointer to the first
byte to be filled in the destination PACKED
ARRAY OF CHARacters. Copy the character
from tos into tos~l characters of the
destination array.

SCN 158 11 Scan(maxdisp, mask, char, start, forpast).
Tos (forpast) is a two-byte quantity (usually
the default integer ()) which is pushed, but
later discarded without being used in this
implementation. Tos-1 (start) is a byte
pointer to the first character to be
scanned in -a PACKED ARRAY OF CHARacters.
Tos-2 (char) is the character against which
each scanned character of the array is to be
checked. Tos-3 (mask) is ¢ if the check is
for equality, or 1 if the check is for
inequality. Tos-4 (maxdisplacement) gives
the maximum number of characters to be scanned
(scan to the left if negative). If a character
check yields TRUE, push the number of
characters scanned (negative, if scanning to
the left). If maxdisp is reached before
character check yields TRUE, push maxdisp .

MVL 158 @2 Moveleft(src, dst, numbytes). Tos
(numbytes) gives the number of bytes to move.
Tos-1 (dst) is a byte pointer to the
destination array’s first byte which will
receive a moved byte. Tos-2 (src) is a byte
pointer to the source array’s first byte which
will be moved. Copy tos bytes from the
source array to the destination array,
proceeding to the right through both arrays.

MVR 158 @3 Moveright(src, dst, numbytes). Tos
(numbytes) gives the number of bytes to move.
Tos-1 (dst) is a byte pointer to the
destination array’s first byte which will
receive a moved byte. Tos-2 (src) is a byte
pointer to the source array’s first byte which
will be moved. Copy tos bytes from the
source array to the destination array,
proceeding to the left through both arrays.

ARCHITECTURE OF P-MACHINE 243

Compiler Procedures

BPT 213 B Breakpoint. Not used (acts as a NOP);
intended for future debugging routines.

TRS 158 @8 Treesearch(fcp, fcp2, name). Tos-2 (fcp)
is a byte pointer to the root of a binary tree.
Tos (name) is a byte pointer to a location
which contains the address of an 8-character
name that you wish to find or to place in the
tree. Search the tree, looking for a record
with the required name. Store the address of
the last node visited, on completion of the
search, into the location pointed to by
byte pointer tos-1 (fcp2), and push the
result of the search:

@ if the last node was a record with
the search name,

1 if the search name should be a new
record, attaching to the last tree
node by the Right Link,

-1 if the search name should be a new
record, attaching to the last tree
node by the Left Link.

This is an assembly-language binary tree
search used by the Compiler. It is fast, but
does NOT do type checking on the parameters.
The binary tree uses nodes of type

CTP = RECORD
NAME: PACKED ARRAY [l..8] OF CHAR;

LLINK, RLINK: “CTP;

other information

END;

IDS 158 ¢7 Idsearch. Used by the Compiler to parse
reserved words and identifiers.

244 APPLE PASCAL OPERATING SYSTEM

Miscellaneous

TIM 158 @9 Time. Pop two pointers to two integers,
and place in those integers a 32-bit
indication of the current time. (Since
the Apple has no real-time clock, this
instruction acts as a NOP. Apple sets
both integers to zero.)

XIT 214 Exit the operating system. Do a
"cold boot" of the system, like the

operating system’s H(alt command.

NOP 215 No operation. Sometimes used to reserve
space in the code for later additionms.

ARCHITECTURE OF P-MACHINE 245

246 APPLE PASCAL OPERATING SYSTEM

APPENDIX B

248
248
248
249
250
250
251
252
254
254
256
258
260
260
260
263

INTRODUCTION

THE SYSTEM CODEFILE
Segments

A Codefile on Diskette
The Segment Dictionary
A Code Segment

A Procedure Dictionary

A Procedure Code Section
SYSTEM MEMORY USE

Apple II Memory Map

The Program Stack

An Activation Record
More on the Program Stack
OVERVIEW

Summary of the Figures
"The Program"

INTRODUCTION

The Apple Pascal system is a version of the UCSD Pascal system, which

is an interpreter-based implementation of Pascal. This means that the
Compiler emits code for a "Pseudo-machine" or "P-machine" which is
emulated at run time by a program written in the machine language of the
host. For the Apple, this P-machine emulation program is the
interpreter, written in the Apple’s 65@2 machine language and found in
the boot diskette’s file SYSTEM.APPLE .

The Apple Pascal operating system and various utilities are themselves
written in Pascal and run on the same interpreter. Thus the entire
system can be moved to a new host machine by rewriting the interpreter
for the new host. Every host computer operating under a version of UCSD
Pascal has an interpreter that makes the host computer "appear", from
the viewpoint of a program being executed, to be this same P-machine.
This appendix describes the '"run-time" or '"execution-time" environment
of the Apple Pascal P-machine. For more information about the
"hardware" of the P-machine, see this manual’s previous appendix,
ARCHITECTURE OF THE P-MACHINE.

At the end of this appendix is a skeleton version of a large Pascal

program, referred to throughout the appendix as '"The Program'". The main
body of this appendix is a top-down description of '"The Program'"’s
diskette codefile, and its execution under the Apple Pascal system.

We will make occasional use of a helpful coincidence: "The Program"
briefly sketches out a very early version of the Apple Pascal operating
systems. The current Apple Pascal operating system has been extended
and changed in many ways from "The Program" shown in the examples.
However, this will not prevent you from understanding the mechanisms

of the P-machine’s operation, which are accurately described.

THE SYSTEM CODEFILE

SEGMENTS

If "The Program" were expanded to the complete Apple Pascal operating
system, it would consist of at least 1§,0@@ lines of Pascal and compile
to more than 10@,0@@ bvtes of code -- just a bit too big to fit all at
once into the memory of an Apple. Therefore, "The Program" is overlayed
using "segments", which let you explicitly partition a program into

portions, only some of which need be resident in main memory at a time.
See the Apple Pascal Language Reference Manual for details about
segments.

Segments used within a program portion must be declared before the body
of the outer program portion. To let an inner segment call an outer=-

248 APPLE PASCAL OPERATING SYSTEM

program procedure, the outer program portion can declare the called
procedure FORWARD before declaring the segment. An example of this

appears in "The Program", where the segment procedure COMPILER uses the
outer program’s procedure CLEARSCREEN, which was declared FORWARD.

Segmenting a program does not change its meaning in any fundamental
sense. When a segment procedure is called (for instance, line A of "The
Program" calls the COMPILER segment procedure), the interpreter checks
to see if that segment is already on the program stack, due to a
previous (and still active) invocation of the segment. If it is,
control is transferred and execution proceeds; if not, the appropriate
code segment must be loaded onto the program stack from disk before the
transfer of control takes place. When no more active invocations of the
segment exist, its code is removed from the program stack. For
instance, in "The Program", the code for the COMPINIT segment is not
present on the stack either before or after tne execution of line A. 1In
fact, the COMPINIT segment is only present on the stack during the
execution of "The Program"’s line B.

A CODEFILE ON DISKETTE

The diskette codefile resulting from compilation of "The Program" is
diagrammed in Figure l. The codefile consists of a segment dictionary
followed by a sequence of code segments. The main program generates one

code segment, and each segment procedure generates another code
segment. The ordering of code segments (from low address to high

address) is determined by the order that one encounters segment
procedure bodies in passing through "The Program".

high diskette addresses

|

Segment #0 PASCALSYSTEM | I
| Segment #4 EDITOR | |
| | | Code
| Segment #3 COMPILER } | Segments
| |
Segment #2 COMPINIT	
Segment #1 USER PROGRAM	
	=
SEGMENT DICTIONARY	<---- Segment
	Dictionary

low diskette addresses
FIGURE 1 COMPLETE CODEFILE OF "THE PROGRAM"

OPERATION OF P-MACHINE 249

Each code segment begins on a boundary between diskette blocks (the
512-byte disk allocation quantum used by the Apple Pascal operating
system). Each segment may occupy many, many blocks; the code for these
segments is only hinted at in the much-abbreviated version shown in "The
Program".

* An overview of the relationship between Figures 1 through 7
(to be discussed in the following pages) is given in Figure 8 at

the end of this appendix. It is helpful to study Figure 8 at this
point for a better understanding of the following sections.

THE SEGMENT DICTIONARY

The segment dictionary, in the first block of a codefile, contains an
entry for each code segment in the file (the main program is assigned
segment #@). The entry includes the segment’s size (in bytes) and its
disk location. The disk location is given as the number of blocks to
the beginning of the code segment, relative to the beginning of the
segment dictionary (which is also the beginning of the codefile). This
information is kept in the system communications area (also called
SYSCOM; see this manual’s appendix, ARCHITECTURE OF THE P-MACHINE)
during the execution of the codefile, and is used in the loading of non-
present segments when they are needed. The segment dictionary also
contains information about the code and data segments of INTRINSIC UNITs

which the program USES. This manual’s appendix, FILE FORMATS, gives a
more detailed account of the information in the segment dictionary.

A CODE SEGMENT

Figure 2 is a detailed diagram of "The Program"’s Segment #@, containing
the code for the main program segment, PASCALSYSTEM. Each code segment
contains the code for that segment’s outer block, as well as the code
for each of the (non-segment) procedures within that segment. Observe
that CLEARSCREEN is the first main-program procedure for which code is
generated and that it appears at the beginning of the segment. The
outer block code, which is generated last, appears last in the code
segment. Following the code for the various procedures is the code
segment’s procedure dictionary.

250 APPLE PASCAL OPERATING SYSTEM

high diskette addresses

| [
Number of procedures	Segment number	
in this segment	of this segment	
————————	Procedure #1 PASCALSYSTEM	
	-	Procedure #2 CLEARSCREEN
I		
1 =] Procedure #3		
[I		
[I rest of		
1	procedure dictionary	
[I	-	
N .		
mm———— >	PROCEDURE #1 (outer block of	
11	PASCALSYSTEM) code	
[
Other procedures in code		Procedure
1	segment PASCALSYSTEM code	
[Sections
	->	PROCEDURE #3 code
I		
=———=>	PROCEDURE #2 (CLEARSCREEN) code	
I I =l
low diskette addresses
FIGURE 2 DETAIL OF THE "PASCALSYSTEM" CODE SEGMENT

A PROCEDURE DICTIONARY

Each procedure in a code segment is assigned a procedure number,
starting at 1 for the outer block (the main program or a segment

procedure), and ranging as high as 149 .
are made via its number.

All references to a procedure

Translation from a procedure’s number to the

location of that procedure’s code in the code segment is accomplished
with the procedure dictionary at the end of the segment. This
dictionary is an array indexed by the procedure number. Each array
element is a self-relative pointer to the code for the corresponding
procedure. Since zero is not a valid procedure number, the zero-th
entry of the dictionary is used to store the number of the code segment
(even byte) and the number of procedures in that code segment (odd byte).

OPERATION OF P-MACHINE 251

A PROCEDURE CODE SECTION

A more detailed diagram of the code section for a single procedure
within a code segment is seen in Figure 3. That figure shows the code
section for procedure CLEARSCREEN, in "The Program'"’s main-program code

segment, PASCALSYSTEM. Each procedure’s code section consists of two
parts: the procedure code itself (in the lower portion of the section)

and a table of attributes of the procedure. These attributes are:

LEX LEVEL: 0dd byte. Specifies the depth of absolute lexical
nesting for the procedure. (E.g., the Lex Level (LL) of

PASCALSYSTEM = -1, LL of COMPILER or CLEARSCREEN = ¢ ,
LL of COMPINIT = 1 , etc.)

PROCEDURE NUMBER: Even byte. Refers to the number given to this
procedure in the procedure dictionary of the parent code
segment. For example, CLEARSCREEN is Procedure #2 (see
Figure 2).

ENTER IC: A self-relative pointer to the first instruction to be
executed for this procedure.

EXIT IC: A self-relative pointer to the beginning of the block of

procedure instructions which must be executed to terminate
procedure properly.

PARAMETER SIZE: The number of bytes of parameters passed to a
procedure from its caller.

DATA SIZE: The size of the activation record (see the later
sections of this appendix for details) in bytes, excluding
the Markstack and PARAMETER SIZE.

Between these attributes and the procedure code there may be an
optional section of memory called the "jump table'". 1Its entries are
addresses within the procedure code. JTAB is a term commonly applied
to the six attributes just discussed and the jump table itself. JTAB
is also one of the system registers, which points to the attributes
and jump table section of the currently executing procedure.

252 APPLE PASCAL OPERATING SYSTEM

|
| PASCALSYSTEM’s

|
|
| Procedure |
| Dictionary |
| Pointer | |
| >|
|
[—|
[|
| 1=
||
[1
[
[
|
I
[
| 1=>]
| |
| |
ad
FIGURE 3 DETAIL OF

high diskette addresses

| =
Lex Level | Procedure # | |
| |
Enter IC | |
| |
Exit IC | | Table of
| | Attributes
Parameter Size | | (JTAB)
| |
Data Size | |
| I
(Optional Jump Table) | -]
|
| -1
CLEARSCREEN | | Procedure
Code | | Code
|
|

low diskette addresses

THE "CLEARSCREEN" PROCEDURE CODE SECTION

OPERATION OF P-MACHINE

253

SYSTEM MEMORY USE

APPLE Il MEMORY MAP

Figure 4 is a sketch of the Apple II’s memory, when running under the
Apple Pascal operating system.

This memory map is specific to the Apple II, and does not apply to any

other computer. It is provided for your curiosity only: a primary
task of the transportable Apple Pascal system is to eliminate the

necessity for the programmer to know anything about specific memory
addresses and use.

The Apple Pascal file SYSTEM.PASCAL roughly corresponds to "The

Program"’s resident code segment named PASCALSYSTEM as discussed
throughout this appendix.

254 APPLE PASCAL OPERATING SYSTEM

Address (Hex)

64K (FFFF)

56K (E@@Q)

52K (D@@@)

52K (D@@@)

48K (CPPP)

44K (BOGO)

24K (6000)
16K (4000)

8K (2009)

3K (Ce9)

+5K (1FF)

.25K (199)

P (900)

FIGURE

Apple Language Card (Language Card)
| | [
SYSTEM.PASCAL (Part 2) |<==>] Monitor ROM |
| | I
SYSTEM.APPLE |
----- P-code - - == | |
Interpreter |<==>| _ _Interpreter_ _ |
(written in 6502 code) | | BIOS I/0 Routines |
|

I |

Apple II Main Board

I

I/0 Expansion ROM Space |

/0 Device Addresses & ROMs

SYSCOM

SYSTEM.PASCAL (Part 1)

Pascal Program Stack

|

|

[

|

|

The Operating System |
|

|

|

(builds down) |
|

|

\')
-------------- | <-- KP (Top of
(Free Memory) | A Program Stack)

[
[

High-Res Graphics, Page 2 | | (Free
| | Memory)

High-Res Graphics, Page 1 | |
[
| v

-------------- | <== NP (Top of Heap)

Pascal Data Heap A
(builds up) |

Text Screens

Evaluation Stack |
(builds down) \Y
------------- | <=- SP (Top of

|
|
|
|
Disk & Console Buffers |
|
|
|

Z

Evaluation Stack)

4

|
ero Page Pascal System Use |
|

MEMORY MAP OF THE APPLE II
WHEN USING APPLE PASCAL

OPERATION OF P-MACHINE 255

THE PROGRAM STACK

Figure 5 is a snapshot of user memory, showing the Pascal program stack

in some detail, during the execution of a call to procedure CLEARSCREEN
from "The Program"’s line C, in segment procedure COMPINIT.

high memory addresses

SYSCOM <~- Segment Dictionary

Information

| |
| |
I |
| PASCALSYSTEM |
| Resident Code Segment |
[[
| |
| |

PASCALSYSTEM
Resident Activation Record

Markstack

| |
| |
| COMPILER Code Segment |
| |
| COMPILER Activation Record |

Markstack

| |
[|
| COMPINIT Code Segment |
| |
| COMPINIT Activation Record |

| Markstack |

| CLEARSCREEN Activation Record

Markstack
MP ==>
(Top Markstack)

<=— KP (Top of
Program Stack)

<=- NP (Top of Heap)

|
| |
| |
| I
| [
I [
| (Free Memory) |
| |
| |
| |
| HEAP |
| |

low memory addresses

FIGURE 5 DETAIL OF USER, MEMORY DURING EXECUTION
OF PROCEDURE "CLEARSCREEN"

256 APPLE PASCAL OPERATING SYSTEM

The Pascal heap is at the lowest part of memory available to programs;
it grows toward high memory. It is used to store dynamic variables,
text files used by the Editor, and other data. The system
communications area (also called SYSCOM), is at the top of memory, above
the system’s resident code segment. SYSCOM is accessible both to
assembly-language routines in the interpreter and (as if it were part of
the stack) and to system routines coded in Pascal. SYSCOM serves as an
important communication link between these two levels of the system (for

more details about SYSCOM, see this manual’s appendix, ARCHITECTURE OF
THE P-MACHINE).

The program stack, growing down from high memory, is used to store three
types of items:

l. A Code Segment for each active program segment (see Figures
1, 2, and 3) and for each active UNIT.

2. An Activation Record containing local variables and Markstack
parameters for each procedure activation (see Figure 6).

3. A Data Segment for each INTRINSIC UNIT which requires one,
loaded on the program stack just before the code
segment for that UNIT.

When segment procedure COMPINIT is called in line B of "The Program",

COMPINIT s code segment (which includes all the compiler initialization
procedures) is loaded onto the program stack. The COMPINIT activation
record is then built on top of the program stacke.

OPERATION OF P-MACHINE 257

Consider the status of operations in COMPILER, just as COMPINIT is
called in line B. The system registers (see this manual’s appendix
ARCHITECTURE OF THE P-MACHINE) contain the following:

SP:

IPC:

JTAB:

MP:

evaluation Stack Pointer. Points to the current top of
the evaluation stack.

program stacK Pointer. Points to the current top of the
program stack, just beyond COMPILER’s activation record.

Interpreter Program Counter. Points to the next COMPILER
instruction, immediately following line B.

SEGment pointer. Points to the COMPILER code segment’s
procedure dictionary.

Jump TABle pointer. Points to the table of attributes
in COMPILER’s procedure code section.

Markstack Pointer. Points to the Markstack in COMPILER’s
activation record. Used to find variables local to COMPILER.

The call to procedure COMPINIT causes the operating conditions which
existed in the system registers, just at the time of COMPILER’s call to
COMPINIT, to be stored in COMPINIT’s Markstack in the following manner:

System registers, Stored in these

at COMPINIT call COMPINIT Markstack fields
SP —_—— MSSP (MarkStack Stack Pointer)
IPC —> MSIPC (MarkStack Interpreter

Program Counter)

SEG —-—D MSSEG (MarkStack SEGment pointer)
JTAB —_— MSJTAB (MarkStack Jump TABle)
MP —_— MSDYN (MarkStack DYNamic link)

In addition, the MarkStack STATic link field (MSSTAT) becomes a pointer

to

In
In

the activation record of the lexical parent of the called procedure.
particular, it points to the MSSTAT field of the parent’s markstack.
this example, COMPINIT’s MSSTAT is made to point to the MSSTAT field

COMPILER’s Markstack. After building the new procedure’s activation
record on the program stack, new values for the system registers SP, IPC,
SEG, JTAB, and MP are established for the new procedure.

If the called procedure has a lex level of -1 or §, the contents of
register BASE are saved on the evaluation stack, and a new value for
BASE is calculated. Finally, KP is saved on top of the program stack,
and a new value for KP is calculated. These elements are not part of
the COMPINIT Markstack or activation record.

258 APPLE PASCAL OPERATING SYSTEM

of

AN ACTIVATION RECORD

Figure 6 is a diagram of the activation record which is placed on the
stack for COMPINIT.

high memory addresses

Other COMPINIT variables

| I
| | [
| [|
| BOOL | | Local
| | | Variables
[1 | |
| | |
| J | =-] Passed
| | < Parameters
| MSSP | == (if any)
R |
| MSIPC | |
I R I
| MSSEG | |
| = = = e - - - | | Markstack
| MSJTAB | |
| s s ms s s === =
| MSDYN { !
| = mmmmc e eeeo I
| MSSTAT | |
WP —> | |-
FIGURE 6 DETAIL OF THE "COMPINIT'" ACTIVATION RECORD

In the upper portion of the activation record, space is allocated for
variables local to the new procedure. For example, COMPINIT’s
activation record allocates space for integer variables I and J, as well
as boolean variable BOOL.

Note that in this example no space is needed for passed parameters
because none were passed to this procedure. If parameters are passed,
they occupy space after the last local variable. If the procedure is a
function, space is also reserved (following the last passed parameter)
for storing the function’s returned value.

The lower portion of the activation record is called a 'Markstack" (also
sometimes called a Mark Stack Control Word, or MSCW). When a call to
any procedure is made, the current values of the system registers, which
characterize the operating environment of the calling procedure, are
stored in the Markstack of the called procedure. This allows the system
registers to be restored to pre-call conditions when control is

returned to the calling procedure.

OPERATION OF P-MACHINE 259

When the call to CLEARSCREEN is made in line C of "The Program",

another activation record is added to the program stack. Once again the
register values and the appropriate Static Link are stored in the new
Markstack (in CLEARSCREEN’s ‘activation record), and the system
registers are then updated. Note that the new SEG no longer points to
the COMPINIT segment’s procedure dictionary, but to the procedure

dictionary for the PASCALSYSTEM code segment (which contains procedure
CLEARSCREEN) .

No code segment for CLEARSCREEN is added to the program stack before
building the activation record, since the code for CLEARSCREEN is
already present on the program stack, in the code segment for
PASCALSYSTEM. The invocation of CLEARSCREEN causes only an activation
record to be added to the program stack. When CLEARSCREEN and COMPINIT
are completed, the COMPILER activation record will again be the top
element on the stack.

MORE ON THE PROGRAM STACK

Figure 7 is a more detailed diagram of the program stack during
execution of an instruction in CLEARSCREEN, including appropriate
pointers for Static and Dynamic Links of CLEARSCREEN’s Markstack. Note
where the system registers point in the program stacke. In particular,
JTAB points to the table of attributes in the CLEARSCREEN procedure code
section which is in the PASCALSYSTEM code segment, IPC points to the
next instruction inside that CLEARSCREEN code, and SEG points to the
base of the PASCALSYSTEM code segment’s procedure dictionary. SP points
to the top of the evaluation stack, which is not shown in this diagram.

OVERVIEW

SUMMARY OF THE FIGURES

Figure 8 illustrates a top-down process by showing the relationships
among Figures 1 through 7.

260 APPLE PASCAL OPERATING SYSTEM

high memory addresses

|<=-- SEG
PASCALSYSTEM Code Segment |
(includes CLEARSCREEN code) |<--- JTAB, IPC

PASCALSYSTEM Activation Rec. |

|
I
|
|
|
[mmmm e e e - - I
|
|
|
I
|

Markstack

|
[
COMPILER Code Segment }
|

COMPILER Activation Record

| Markstack
| | -]
[-——->] 20 I b |
| |= = = = = = - - - - - -~ | | Code
| |COMPINIT Procedure Dictionary| | Segment
| >| | | of
| | |=-=>| COMPINIT outer block code | | COMPINIT
LIl lmmmm e m e e e m e = - ! I
|1 | COMPINIT procedures code | -]
[|
|1 | COMPINIT 1local variables | —| Activation
|1 | = = = = e e - - - -~ | | Record
1] | COMPINIT Markstack |<=] —| of COMPINIT
[I (.
| 1] | CLEARSCREEN local variables | | -]
|1 |1 |
R MSSP — |
R || |
|1 == MSIPC | | | Activation
| | [e |1 | | Record
| == | MSSEG [| | of
| | = == = e e - - - - | | | CLEARSCREEN
| === I MSJTAB | | I
[wsssssscsm=u=s | |
| MSDYN |--1 | |
| e - - I |
--------- | MSSTAT | | —|
l l <~ MP, I
| (Free Memory) | &KP ~ V
I I (to
low memory addresses evaluation
stack)
FIGURE 7 DETAIL OF THE PROGRAM STACK DURING

EXECUTION OF PROCEDURE CLEARSCREEN

OPERATION OF P-MACHINE 261

A CODE SEGMENT

A PROCEDURE
CODE SECTION

Procedure Dictionary

|
[
A PROGRAM CODEFILE |
PASCALSYSTEM code |
outer block section II |==============|
|
|

|
|
|
|
| | I
Main PASCALSYSTEM			Table of	
Program Segment	-->	More procedures code	Attributes	
		in segment sections	(JTAB)	
PASCALSYSTEM s		PASCALSYSTEM		————
Segment Procedures				CLEARSCREEN
		Procedure code	=-->	Procedure
Segment Dictionary		CLEARSCREEN section		Code
L I				
Figure 1 Figure 2 Figure 3
Complete Codefile Detail of the Detail of the
of "The Program" "PASCALSYSTEM" "CLEARSCREEN"
Code Segment Procedure

Code Section

THE PROGRAM STACK

MEMORY MAP A CODE SEGMENT
| |
	[PASCALSYSTEM [[——				
			Code Segment	=-=->	(Figure 2)
The Program Stack	==>	= = = = = = = = = = = = =		————— e	
			PASCALSYSTEM		
) v		Activation Record	AN ACTIVATION		
			RECORD		
(Free Memory)		COMPILER Code Segment			
__________ l l ------------- [============= I					
A		COMPILER Activation Rec.		COMPINIT	
			[Local	
The Heap		COMPINIT Code Segment		Variables	
	demmmm e I e ———				
		COMPINIT Activation Rec.	==>	Parameters	
Evaluation Stack			mmm		
) v_		CLEARSCREEN Activ’n Rec.		Markstack	
			[———		
Figure 4 Figure 5 Figure 6
Memory Map Detail of the Program Stack Detail of the
of the Apple II During Execution of the ""COMPINIT"
"CLEARSCREEN" Procedure Activation Record
Figure 7
The Program Stack in More Detail
FIGURE 8 RELATIONSHIP OF APPENDIX FIGURES

262 APPLE PASCAL OPERATING SYSTEM

“THE PROGRAM”

This is "The Program", various parts of which are used as examples
throughout this appendix. As mentioned in the introduction, "The
Program" shows just the partial skeleton of a very early version of
the Apple Pascal operating system. Much of the code is only hinted
at, and many of the segments used in the current version of the Apple
Pascal operating system are missing entirely from "The Program".

PROGRAM PASCALSYSTEM;

VAR
SYSCOM: SYSCOMREC;

CH:CHAR;
PROCEDURE CLEARSCREEN; FORWARD;

SEGMENT PROCEDURE USERPROGRAM;
BEGIN
END;
SEGMENT PROCEDURE COMPILER;
VAR
SY,OP: INTEGER;
SYMCURSOR: INTEGER ;

PROCEDURE INSYMBOL; FORWARD;

SEGMENT PROCEDURE COMPINIT;

VAR
I,J:INTEGER;
BOOL : BOOLEAN ;

BEGIN

I:=1;
CLEARSCREEN; < Line C
INSYMBOL;

END;

PROCEDURE INSYMBOL;
BEGIN ... END;

PROCEDURE BLOCK;
BEGIN ... END;

BEGIN (*COMPILER*)
COMPINIT; < Line B
INSYMBOL;

END; (*COMPILER*)

(continued on next page)

OPERATION OF P-MACHINE 263

SEGMENT PROCEDURE EDITOR;

BEGIN «ss END;

PROCEDURE CLEARSCREEN
BEGIN

WRITE (

END;

BEGIN (*PASCALSYSTEM*)
REPEAT
READ (CH) ;
CASE CH OF
‘C’:COMPILER; <
‘E’ :EDITOR;
‘U’ : USERPROGRAM
END (*CASE*)
UNTIL CH = “H’
END.

264 APPLE PASCAL OPERATING SYSTEM

)3

Line A

FILE FORMATS

OPERATION OF P-MACHINE 265

TEXT FILES

At the beginning of each text file is a 1¢24-byte (two blocks, on
diskette) header page, which contains information for the use of the
text editor. This space is reserved for use by the text editor, and is
respected by all portions of the system. When a user program opens a
TEXT file, and REWRITEs or RESETs it with a title ending in .TEXT , the
I/0 subsystem will create and skip over the initial header page. This
is done to facilitate users editing their input and/or output data. The
file-handler will transfer the header page only on a disk-to-disk
transfer, and will omit it on a transfer to a serial device (thus
transfers to PRINTER:, and CONSOLE: will omit the header page).

Following the initial header page, the text itself appears in subsequent
1¢24-byte text pages (two blocks each, on diskette), where a text page
is defined:

[DLE] [indent] [text] [CR] [DLE] [indent] [text] [CR]...[nulls]

DLE’s (Data Link Escapes) are followed by an indent-code, which is a
byte containing the value 32+(number to indent). The nulls at the end
of the page follow a [CR] in all cases, and are a pad to the end of a
1¢24-byte page (because the compiler wants integral numbers of lines
on a page). The Data Link Escape and corresponding indentation code
are optional. In a given text file, some lines will have the codes,
and some won’t.

DATA FILES

The formats for Data files are up to the user.

CODE FILES

Codefiles may contain up to 16 segments. Block @ of a codefile
contains information regarding name, kind, relative address and length
of each code segment. This information is called the '"segment
dictionary" and is represented as a record:

RECORD
DISKINFO: ARRAY[@..15] OF
RECORD
CODELENG, CODEADDR:INTEGER
END;

SEGNAME: ARRAY([@..15] OF PACKED ARRAY[(@..7] OF CHAR;
SEGKIND: ARRAY[@..15] OF (LINKED,HOSTSEG,SEGPROC,UNITSEG,

SEPRTSEG,UNLINKED INTRINS,
LINKED INTRINS,DATASEG);

266 APPLE PASCAL OPERATING SYSTEM

TEXTADDR: ARRAY([@..15] OF INTEGER;

SEGINFO: PACKED ARRAY [@..15] OF
PACKED RECORD
SEGNUM: @..255;
MTYPE: @..15;
UNUSED: @..1;
VERSION : @..7
END;

INTRINS_SEGS: SET OF @..31;
(* library information: format undefined %)

COMMENT: STRING
END;

First is an array of sixteen word-pairs, each word-pair describing one
segment of code. CODELENG and CODEADDR give, respectively, the length
of the code segment in bytes, and the block address of the code segment.

The first and second word in the first block constitute the first word-
pair, which describes the block-location and length of code segment (.
Segment (§ contains the outermost code for the main program. Subsequent
segments contain the code for the program’s various segment procedures
and regular Units (if any), in the order of their appearance in the
programe.

Following this word-pair array is an array of arrays of characters.
This is an array of sixteen eight-character arrays which describe the
segments by name. These eight characters are those which identify the
main program and its segment procedures at compile time.

Following the array of names is an array, again sixteen words long,

of state descriptors. The values in this array indicate what kind of
segment (SEGKIND) is at the described location. The values for this
array, at present, are: LINKED, HOSTSEG, SEGPROC, UNITSEG, SEPRTSEG,
UNLINKED INTRINSIC, LINKED INTRINSIC, and DATASEG. A description of the
segments corresponding to various SEGKINDs follows:

LINKED A fully executable code segment. Either all

external references (UNITs or EXTERNALs or .REFs)
have been resolved, or none were present.

FILE FORMATS 267

HOSTSEG The outer block of a Pascal program, if the
program has external references.

SEGPROC A Pascal segment procedure (not used).
UNITSEG A compiled regular UNIT .

SEPRT SEG A separately compiled procedure or function.
Assembly-language codefiles are always of this
type.

UNLINKED INTRINS An INTRINSIC UNIT containing unresolved
calls to assembly-language procedures or functions.

LINKED INTRINS An INTRINSIC UNIT in its final, ready-to-run
statee.

DATASEG A specification for the data segment associated
with an INTRINSIC UNIT, telling how many bytes to
allocate and which segment to use.

See the Apple Pascal Language Reference Manual for more information
about Pascal SEGMENTs and UNITs.

After the array of segment kinds is an array of sixteen integers. If a
segment is a regular or Intrinsic Unit, the value of the corresponding
array element gives the relative block number (TEXTADDR) where the
Interface portion of that Unit begins. Array elements corresponding to
non-Unit segments have the value zero.

Next is an array of sixteen words (SEGINFO), each word describing one
segment of code. Bits @ through 7 (the rightmost bits) of each word
specify the segment number for that code segment. This specifies the
slot number the code segment will occupy in the system’s SEGTABLE, at
execution time. Bits 8 through 11 identify the '"Machine type" which
tells what kind of code is present in the code segment. These machine
types are assigned as follows:

[i} Unidentified code, perhaps from a previous compiler.
1 P-code, most significant byte first (positive byte sex).
2 P-code, least significant byte first (negative byte sex).

A stream of packed ACCII characters fills the low byte of
a word first, then the high byte. This is the kind of
P-code used by the Apple.

3 through 9 Assembled machine code, produced from assembly-language

text. Machine type 7 identifies machine code for Apple’s
6502.

268 APPLE PASCAL OPERATING SYSTEM

Bit 12 (UNUSED) in each word is an unused filler, usually set to zero.
Bits 13 through 15 identify the version number of the system; currently
this is set to the number one.

Next are two words (INTRINS_SEGS) that tell the system which Intrinsic
Units are needed in order to execute the codefile. Each Intrinsic Unit

in SYSTEM.LIBRARY is identified by a segment number (or two segment
numbers, if the Intrinsic Unit has a data segment). Each of the thirty-
two bits in INTRINS_SEGS corresponds to one of the thirty-two possible
Intrinsic Unit segment numbers. If the n-th bit is set to 1, this
indicates the program will USE the Intrinsic Unit whose segment number in
SYSTEM.LIBRARY is n .

Library information of undefined format occupies most of the remainder
of the segment dictionary block. The "copyright" text supplied by the
Pascal Computer $C option may appear at the very end of the block.

The actual code segments begin in block 1 of the codefile. The internal
format of codefile segments is shown in some detail in the first portion
of this manual’s appendix, OPERATION OF THE P-MACHINE. See that
appendix for more details about codefile segments.

For an unlinked code segment (that is, a segment containing unresolved
external references) the Compiler generates Linker information which
begins at the first block boundary following the last segment of code.
This information is a series of records, one for each

UNIT, routine or variable which is referenced in, but not defined in the

source. The first eight words of each record contain the following
information:

LITYPES = (EOFMARK, UNITREF, GLOBREF, PUBLREF, PRIVREF, CONSTREF,
GLOBDEF, PUBLDEF, CONSTDEF, EXTPROC, EXTFUNC, SEPPROC,
SEPFUNC, SEPPREF, SEPFREF);

LIENTRY=RECORD

NAME: ALPHA;
CASE LITYPE: LITYPES OF
UNITREF,
GLOBREF,
PUBLREF,
PRIVREF,
SEPPREF,
SEPFREF,
CONSTREF:
(FORMAT: OPFORMAT; (format of lientry.name can be
any of BIG, BYTE or WORD)
NREFS: INTEGER; (number of refs to lientry.name
in compiled code segment)
NWORDS: LCRANGE); (size of privates in words)
GLOBDEF:
(HOMEPROC: PROCRANGE; (which procedure it occurs in)
ICOFFSET:ICRANGE) ; (byte offset in p-code)

FILE FORMATS 269

PUBLDEF:
(BASEOFFSET: LCRANGE);
CONSTDEF:
(CONSTVAL: INTEGER);
EXTPROC, EXTFUNC,
SEPPROC, SEPFUNC:
(SRCPROC: PROCRANGE;
NPARAMS: INTEGER);
EOFMARK:
(NEXTBASELC: LCRANGE)
END (lientry);

(compiler-assigned word offset)
(user’s defined wvalue)
(procedure number in source seg)
(number of parameters expected)

(private var allocation info)

If the LITYPE is one of the first case variants, then following this
portion of the record is a list of pointers into the code segment.
Each of these pointers is the absolute byte address within the code
segment of a reference to the variable, UNIT or routine named in the
lientry. These are eight-word records, but only the first NREFs of

them are wvalid.

270 APPLE PASCAL OPERATING SYSTEM

APPENDIX D

272
273
276
277
278
280
281
283
284

When to Use .TEXT and .CODE
Language System Diskette Files
Pascal I1/0 Device Volumes
Apple I/0 Device Slots
Execution Error Messages

I/0 Error Messages

6502 Assembler Error Messages
ASCIYI Character Codes
P-Machine Op-Codes

WHEN TO USE .TEXT AND .CODE

An Apple Pascal filename normally ends with a "suffix" that tells the
system something about the contents of that file. The most common
suffixes are .TEXT , for files containing text (natural language,
Pascal program text, or 65p2 assembly-language text), and .CODE , for

files containing code (compiled P-code or assembled 65@2 machine code).

Many Apple Pascal commands deal with various diskette files that you must
specify by filename. In those instances where the file being acted on can
be of only one type (.TEXT , .CODE , etc.) the system allows you to type
the filename either with or without the suffix. If you forget to add the
suffix, the system will add it for you. In those instances where a
command may apply to files of more than one file type, the following

rules apply:

1. Several Filer commands which must distinguish between textfiles
and codefiles will use the given filename exactly as typed, without
adding any suffix for you. These commands are: T(ransfer, M(ake,
C(hange, and R(emove.

2. The S(ave command automatically supplies the correct suffix
(.TEXT or .CODE) to the version of the workfile being S(aved.
Therefore, when using this command, don’t specify a suffix.

3. Code segments may be stored in library files which have either
.CODE or .LIBRARY as their suffix. Commands that use these files
must specify the suffix. These include the Librarian utility’s

OUTPUT CODE FILE, and the Pascal Compiler’s Use-Library
(*$Ufilename*) control option.

272 APPLE PASCAL OPERATING SYSTEM

LANGUAGE SYSTEM DISKETTE FILES

The following table shows which files are normally found on each of the
Language System Diskettes needed for Apple Pascal. The ORDER of the
files on any diskette is unimportant. When most files are needed by the
system, it is only necessary that the file be present on ANY diskette in
ANY drive. For exceptions to this rule, see the DISKFILES NEEDED
sections of this manual’s chapter THE COMMAND LEVEL.

Diskette Diskette
APPLE@: APPLE3:
SYSTEM.PASCAL SYSTEM.APPLE
SYSTEM.MISCINFO FORMATTER .CODE
SYSTEM.COMPILER FORMATTER .DATA
SYSTEM. EDITOR LIBRARY.CODE
SYSTEM.FILER LIBMAP.CODE
SYSTEM.LIBRARY SETUP.CODE
SYSTEM.CHARSET BINDER.CODE
SYSTEM. SYNTAX CALC.CODE
LINEFEED.TEXT
LINEFEED.CODE
SOROCGOTO . TEXT
Diskette SOROCGOTO .CODE
APPLEL: SOROC.MISCINFO
HAZELGOTO . TEXT
SYSTEM.APPLE HAZELGOTO .CODE
SYSTEM.PASCAL HAZEL .MISCINFO
SYSTEM.MISCINFO CROSSREF.TEXT
SYSTEM. EDITOR CROSSREF.CODE
SYSTEM.FILER SPIRODEMO . TEXT
SYSTEM.LIBRARY SPIRODEMO.CODE
SYSTEM.CHARSET HILBERT.TEXT
SYSTEM. SYNTAX HILBERT .CODE
GRAFDEMO . TEXT
GRAFDEMO .CODE
GRAFCHARS .CODE
Diskette GRAFCHARS . TEXT
APPLE2: TREE.TEXT
TREE.CODE
SYSTEM.COMPILER BALANCED . TEXT
SYSTEM.LINKER BALANCED .CODE
SYSTEM.ASSMBLER DISKIO.TEXT
650@% .OPCODES DISKIO.CODE
65@¢@ . ERRORS

TABLES

273

The next portion of the table gives more information about the various
files provided with the Apple Pascal system.

Filename

SYSTEM.APPLE

SYSTEM.PASCAL

SYSTEM.MISCINFO

SYSTEM.EDITOR

SYSTEM.FILER

SYSTEM.LIBRARY

SYSTEM. CHARSET

SYSTEM. SYNTAX

SYSTEM.COMPILER

SYSTEM.LINKER

Contents of File

Interpreter,
written in 6502
machine language

Command level

portion of
operating system

Information about
terminal in use

Text Editor

Filer

Routines for 1/0,
long integers,
trig. functionms,
graphics, etce.

Array providing
upper & lower
case graphic
character set

Compiler error
messages

Pascal Compiler

Linker

274 APPLE PASCAL OPERATING SYSTEM

Use of File

Executes P=-code
on Apple’s 6502
processor

Lets you pick
E(dit, F(ile,
R(un, etce.

Tells system

about terminal
hardware

Lets you make
& change text

Lets you store,
delete & move
disk files

Many programs
use these

library
routines

Lets you put
text on
graphics
screen

Provides message

in E(ditor
after Compiler
finds an error

Converts Pascal
program text
to P-code

Puts library
routines into
your program

When File Needed

Power-on, H(alt

Power-on, H(alt,
RESET,
I(nitialize,
every return
to Command
level

Power-on, H(alt,
RESET,
I(nitialize

E(dit, C(ompile
R(un, A(ssemble

F(ile

R(un, X(ecute,
L(ink, C(ompile,
if library
routines are
used

Used by WCHAR
& WSTRING in
TURTLEGRAPHICS

R(un, C(ompile
followed by
E(dit after
an error

C(ompile, R(un

L(ink, R(un

SYSTEM.ASSMBLER

65@¢ .0PCODES

650@ .ERRORS

FORMATTER.CODE
FORMATTER .DATA
LIBRARY.CODE

LIBMAP.CODE

SETUP.CODE

SOROC.MISCINFO

HAZEL .MISCINFO

BINDER.CODE

SOROCGOTO . TEXT
SOROCGOTO.CODE

HAZELGOTO.TEXT
HAZELGOTO.CODE

CALC.CODE

LINEFEED.TEXT
LINEFEED.CODE

6502 Assembler

Instruction set
for Assembler

Assembler error
messages
Utility program
Utility program

Utility program

Utility program

SYSTEM.MISCINFO
for Soroc 1Ql2¢
terminal

SYSTEM.MISCINFO

for Hazeltine
1500 terminal

Utility program

GOTOXY procedure
for Soroc IQl2Q

GOTOXY procedure

for Hazeltine 15@¢

Utility program

Utility program

Converts 6502
assembly text

into machine code

Used by the
Assembler

Provides message
after Assembler
finds an error

Formats new
diskettes

Puts new routines
into library

Reveals contents
of library file

Makes new file
SYSTEM.MISCINFO
for use with

external terminal

Eliminates SETUP
for using a
Soroc IQl2@

Eliminates SETUP

for using a
Hazeltine 1500

Makes new file
SYSTEM.PASCAL

with GOTOXY for

external terminal

Used with BINDER
for Soroc IQl2§

Used with BINDER

A(ssemble

A(ssemble

A(ssemble

X(ecute FORMATTER

X(ecute LIBRARY

X(ecute LIBMAP

X(ecute SETUP

X(ecute BINDER

for Hazeltine 15@0

Lets you divide,

multiply, add &
subtract numbers

Removes linefeed
normally sent to

X(ecute CALC

X(ecute LINEFEED

printer after RETURN

TABLES 275

CROSSREF.TEXT
CROSSREF.CODE
SPIRODEMO.TEXT
SPIRODEMO.CODE
HILBERT.TEXT
HILBERT.CODE
GRAFDEMO.TEXT
GRAFDEMO.CODE
GRAFCHARS .CODE
GRAFCHARS . TEXT
TREE.TEXT
TREE.CODE
BALANCED.TEXT
BALANCED.CODE
DISKIO.TEXT
DISKIO.CODE

These are a collection of small
demonstration programs, illustrating
various features of the Apple Pascal
language. The first 5 pairs of files
show examples of using the Apple Pascal
graphics features. The next 2 pairs of
files show a simple "tree'" algorithm for
sorting data. The last pair of files

is a brief example of using random-access
disk files.

Each pair of files consists of a .TEXT
version which you can read in the Editor,
and a .CODE version you can X(ecute. See
the Apple Pascal Language Reference Manual
for more information about these files.

PASCAL I/O DEVICE VOLUMES

The Apple Pascal operating system assigns volume numbers and volume names
to the various input/output devices as follows:

Volume
Number

#@:
#ls
#2:

#3:

Volume

CONSOLE:

SYSTERM:

Description of
Input/Output Device

(not used)
Screen & keyboard (echo on input)
Screen & keyboard (no echo on input)

(not used)

{4z
#5:
#6:
#7:
#8:
#9:
#10:
#11:

#12:

276 APPLE PASCAL OPERATING SYSTEM

<diskette name>:

<diskette name>:

PRINTER:

REMIN:

REMOUT:

<diskette name>:

<diskette name>:

<diskette name>:

<diskette name>:

Boot disk drive (slot 6, drive 1)
2nd disk drive (slot 6, drive 2)
Printer (card in slot 1)
Remote input

(card in slot 2)
Remote output
5th disk drive (slot 4, drive 1)
6th disk drive (slot 4, drive 2)
3rd disk drive (slot 5, drive 1)
4th disk drive (slot 5, drive 2)

APPLE 1/O DEVICE SLOTS

In using an Apple computer with the Apple Pascal operating system,
che Apple’s peripheral equipment slots are assigned as follows:

Apple Input/Output Device and Card Apple Pascal
Slot Assigned to That Slot Operating System Use
) Apple Language Card * Stores interpreter

and 1/0 system

1 Printer (Communications Interface PRINTER: or #6:
Card, Serial Interface Card, or
Parallel Printer Interface Card)

2 Modem, Apple-to-Apple communication, REMIN: or #7:
etc. (Communications Interface REMOUT: or #8:
Card or Serial Interface Card)

3 External terminal (Communications CONSOLE: or #1:
Interface Card. Use of Serial (with echo on input)
Interface Card is tolerated.)

SYSTERM: or #2:
(without echo on input)

4 5th disk drive (Drive 1) diskette name: or #9:
6th disk drive (Drive 2) diskette name: or #1@:
(Disk Controller Card)

5 3rd disk drive (Drive 1) diskette name: or #l1:
4th disk drive (Drive 2) diskette name: or #12:
(Disk Controller Card)

6 Boot disk drive (Drive 1) * diskette name: or #4:
2nd disk drive (Drive 2) diskette name: or {#5:
(Disk Controller Card)

7 Must not contain a disk drive
(Do not install a Disk
Controller Card here.)

Apple keyboard and screen CONSOLE: or #l:
(only if there is no (with echo on input)
Communications Interface
Card in slot #3) SYSTERM: or #2:

(without echo on input)

Note: An asterisk (*) indicates a device which is REQUIRED to be
present in that slot.

TABLES 277

Note: It is possible to use the Apple Pascal operating system with an
Apple computer system containing only a single disk drive.

Note: If a Communications Interface Card is installed in slot #3, for
use with an external terminal, booting the system automatically loads
the Apple Pascal operating system into a different area of memory (using
some of the Apple’s text-screen memory). This happens whether or not
the external terminal is actually connected to the Communications
Interface Card. To return to using the Apple without the external
terminal, you must turn off the Apple’s power switch, remove the
Communications Interface Card from slot #3, and turn on the Apple’s
power again to re-boot the system.

EXECUTION ERROR MESSAGES

When a program or any portion of the Apple Pascal operating system is
running, execution errors are reported by number or by message, in one
of the following forms:

EXEC ERR # 1¢ I0 ERROR: VOL NOT FOUND
s# 1, P# 7, 1# 56 s# 1, P# 7, I# 56
TYPE <SPACE> TO CONTINUE TYPE <SPACE> TO CONTINUE

where S# specifies the program’s current segment number, P# specifies
the procedure number within that segment, and I# specifies the byte
number in that procedure where the error was detected. User 1/0 errors
(only) are reported in the more detailed second form only if file
SYSTEM.PASCAL is in the boot drive at the time.

See this manual’s section on Error Handling, in the appendix
ARCHITECTURE OF THE P-MACHINE, for more details. Also see the Apple
Pascal Language Reference Manual’s discussion of the L+ (compiled
listing) compiler option, which describes how to list segment,
procedure, and byte number information when you compile a programe.

Error Error Message Fatal

Number and Description Error?
1) System error of undefined nature. FATAL
1 Invalid index, value out of range for string or

subrange (XINVNDX). Does not occur if -R- compiler
option used.

2 No segment: bad code file (XNOPROC). File reads
correctly from disk, but not a valid segment.

3 Procedure not present at exit time (XNOEXIT): exit
from a procedure that was not previously called or
active.

278 APPLE PASCAL OPERATING SYSTEM

19

11

12

13

14

15

Stack overflow (XSTKOVR): the program stack and the
heap together have exceeded available user memory.

Integer overflow (XINTOVR). Integer arithmetic gave
a result >16 bits. Long integer arithmetic gave an
intermediate result >36 digits or final result was
assigned to variable of insufficient size.

Divide by zero (XDIVZER).

Invalid memory reference <bus timed out> (XBADMEM):
(not used on the Apple).

User break (XUBREAK): "break" key pressed
(CTRL-@, on the Apple).

System I/0 error (XSYIOER): error in attempting FATAL
to read an operating system segment from disk.

User 1/0 error (XUIOERR): error when user’s program

attempted a blockread, blockwrite, get, or put.
If file SYSTEM.PASCAL available, this error is
further reported as an I1/0 ERROR (see next page).

Unimplemented instruction (XNOTIMP): op-code not
implemented, or CSP to non-existent routine.

Floating point math error (XFPIERR): error in real
number format, overflow, underflow, etc.

String too long (XS2LONG): attempt to store a
source string into a destination string of
insufficient size.

Halt, Breakpoint (without debugger in core) (XHLTBPT):
(not used on the Apple).

Bad Block (not used on the Apple; Apple reports
I/0 ERROR #64, instead).

A fatal error either causes the system to "cold boot" itself or (if the
error was totally lethal to the system) forces you to '"cold boot" the
system by turning the Apple off and then on again. All other errors

cause the system to re-initialize itself (do a '"warm boot" by calling
system procedure INITIALIZE), usually after you press the Apple’s
spacebar to continue.

TABLES 279

I/O ERROR MESSAGES

Error Error Message
Number and Description
)] No error
1 Diskette has bad block: parity error (CRC).
(Not used on the Apple.)
2 Bad device (volume) number.
3 Bad mode: illegal operation. (For example, an

attempt to read from PRINTER:.)

4 Undefined hardware error. (Not used on the Apple.)

5 Lost device: device is no longer on-line, after
successfully starting an operation using that
device.

6 Lost file: file is no longer in the diskette

directory, after successfully starting an
operation using that file.

7 Bad title: illegal filename. (For example,
filename is more than 15 characters long.)

8 No room: insufficient space on the specified
diskette. (Files must be stored in contiguous
diskette blocks.)

9 No device: the specified volume is not on-line.

19 No file: the specified file is not in the directory
of the specified volume.

11 Duplicate file: attempt to re-write a file when
a file of that name already exists.

12 Not closed: attempt to open an already-open file.
13 Not open: attempt to access a closed file.
14 Bad format: error in reading real or integer.

(For example, your program expects an integer
input but you typed a character.)

15 Ring buffer overflow: characters are arriving at
the Apple faster than the input buffer can
accept them.

280 APPLE PASCAL OPERATING SYSTEM

16 Write-protect error: the specified diskette is
write-protected.

64 Device error: failed to complete a read or write
correctly (bad address or data field on diskette).

The appropriate one of these I/0 error messages is given when execution

error #1l@ occurs (see previous page), if the file SYSTEM.PASCAL is in
the boot drive. See the Apple Pascal Language Reference Manual for
information about the Apple Pascal function IORESULT, which returns the
error numbers shown above.

6502 ASSEMBLER ERROR MESSAGES

When the 65@2 Assembler discovers an error in your assembly-language

routine, it gives an error message taken from the file 65p@.ERRORS ,
usually found on diskette APPLE2: . If the file 65@@.ERRORS is not
available in any drive, errors will be reported by number, only.

The 6502 Assembler error message corresponding to each error number
is given in the table below. Some people may prefer to gain some

additional diskette space by removing the file 65@@.ERRORS and using
this table instead.

The first portion of this table lists all the general error messages.

Machine errors specific to Apple’s 65@2 are found in the last portion
of the table.

GENERAL ERRORS

¢ Undefined label

: Operand out of range

: Must have procedure name

: Number of parameters expected

: Extra garbage on line

: Input line over 8¢ characters

: Not enough .IF’s

¢ Must be declared in .ASECT before used
: Identifier previously declared

1¢: Improper format

11: .EQU expected

12: Must .EQU before use if not to a label
13: Macro identifier expected

14: Word addressed machine

15: Backward .ORG currently not allowed
16: Identifier expected

17: Constant expected

18: Invalid structure

WCo~NSOTULEFEWN -

TABLES 281

19: Extra special symbol

2@: Branch too far

21: Variable not PC relative

22: Illegal macro parameter index

23: Not enough macro parameters

24: Operand not absolute

25: Illegal use of special symbols

26: Ill-formed expression

27: Not enough operands

28: Cannot handle this relative expression
29: Constant overflow

3@: Illegal decimal constant

31: Illegal octal constant

32: Illegal binary constant

33: Invalid key word

34: Macro stack overflow: 5 nested limit

35: Include files may not be nested

36: Unexpected end of input

37: This is a bad place for an .INCLUDE file
38: Only labels & comments may occupy column 1
39: Expected local label

4@: Local label stack overflow

41: String constant must be on one line

42: String constant exceeds 8@ characters
43: Illegal use of macro parameter

44: No local labels in .ASECT

45: Expected key word

46: String expected

47: Bad block, parity error (CRC)

48: Bad unit number

49: Bad mode, illegal operation

5¢: Undefined hardware error

51: Lost unit, unit is no longer on-line

52: Lost file, file is no longer in directory
53: Bad title, illegal file name

54: No room, insufficient space on disk

55: No unit, no such volume on-line

56: No file, no such file on volume

57: Duplicate file

58: Not closed, attempt to open an open file
59: Not open, attempt to access a closed file
6@: Bad format, error in reading real or integer
61: Nested macro definitions illegal

62: ‘=’ or “<>° expected

63: May not .EQU to undefined labels

64: Must declare .ABSOLUTE before lst .PROC

282 APPLE PASCAL OPERATING SYSTEM

65@2-SPECIFIC ERRORS

76:
77:
78:
79:
8¢:
81:
82:
83:

Index register required
‘X’ or ‘Y’ expected
Zero-page address required
Illegal use of register

Index register expected
Il1l1-formed operand

‘X" expected for indexed addressing
Must use ‘X’ index register

ASCIl CHARACTER CODES

Dec Hex

I e e e e e i]
SOV NN HFROVWONOOUPWDN S

NN
N =

NN NN
aoaunes W

w N NN
QO O

w
—_

1)
g1
@2
@3
B4
@5
g6
@7
@8
?9
gA
@B
gc
gD
@E
gF
19
11
12
13
14
15
16
17
18
19
1A
1B
1c
1D
1E
1F

Char Dec Hex Char Dec Hex
NUL 32 20 SP 64 49
SOH 33 21 ! 65 41
STX 34 22 " 66 42
ETX 35 23 # 67 43
EOT 36 24 $ 68 44
ENQ 37 25 % 69 45
ACK 38 26 & 79 46
BEL 39 27 i 71 47
BS 49 28 (72 48
HT 41 29) 73 49
LF 42 2A % 74 4A
VT 43 2B+ 75 4B
FF 44 2¢ 76 4C
CR 45 2D - 77 4D
S0 46 2E . 78 4E
SI 47 2F |/ 89 4F
DLE 48 3¢ ¢ 8¢ 5¢
DCl 49 31 1 81 51
DC2 5¢ 32 2 82 52
DC3 51 33 3 83 53
DC4 52 34 4 84 54
NAK 53 35 5 85 55
SYN 54 36 6 86 56
ETB 55 37 7 87 57
CAN 56 38 8 88 58
EM 57 39 9 89 59
SUB 58 3A 9¢ 5A
ESC 59 3B 91 5B
FS 60 3¢ < 92 5C
GS 61 3D = 93 5D
RS 62 3E > 94 5E
us 63 3F ? 95 5F

Q
=
[V
a1

)=~ NN S <dHNMFBO"”OZRETE RUuHIDOH BHOO WP

Dec Hex

96

97

98

99
199
191
192
103
104
1¢5
106
197
198
109
119
111
112
113
114
115
116
117
118
119
129
121
122
123
124
125
126
127

60
61
62

63

65
66
67
68
69
6A
6B
6C
6D
6E
6F
70
71
72
73
74
75
76
77
78

7A
7B
7C
7D
7E
7F

Char

]

Iv—A N N << R QTO B HRE FLOHITQMAMAD AN OB

DEL

TABLES 283

P-MACHINE OP-CODES

Dec Hex Mnemonic Dec Hex Mnemonic Dec Hex Mnemonic

® @@ SLDC ¢
1 ¢1 sLpC 1

126 7E SLDC 126

127 7F SLDC 127 17¢ AA SAS 213 D5 BPT

128 8¢ ABI 171 AB SRO 214 D6 XIT

129 81 ABR 172 AC XJP 215 D7 NOP

13¢ 82 ADI 173 AD RNP 216 D8 SLDL 1

131 83 ADR 174 AE CIP 217 D9 SLDL 2

132 84 LAND 175 AF EQU 218 DA SLDL 3

133 85 DIF 176 B@ GEQ 219 DB SLDL 4

134 86 DVI 177 Bl GRT 22¢ DC SLDL 5

135 87 DVWR 178 B2 LDA 221 DD SLDL 6

136 88 CHK 179 B3 LDC 222 DE SLDL 7

137 89 FLO 189 B4 LEQ 223 DF SLDL 8

138 8A FLT 181 B5 LES 224 E@ SLDL 9

139 8B INN 182 B6 LOD 225 El SLDL 1¢
14¢ 8C 1INT 183 B7 NEQ 226 E2 SLDL 11
141 8D LOR 184 B8 STR 227 E3 SLDL 12
142 8E MODI 185 B9 UJP 228 E4 SLDL 13
143 8F MPI 186 BA LDP 229 E5 SLDL 14
144 9¢ MPR 187 BB STP 23¢ E6 SLDL 15
145 91 NGI 188 BC LDM 231 E7 SLDL 16
146 92 NGR 189 BD STM 232 E8 SLDO 1

147 93 LNOT 19¢ BE LDB 233 E9 SLDO 2

148 94 SRS 191 BF STB 234 EA SLDO 3

149 95 SBI 192 Cc¢ IXp 235 EB SLDO 4

159 96 SBR 193 Cl RBP 236 EC SLDO 5

151 97 SGS 194 C2 CBP 237 ED SLDO 6

152 98 sQI 195 C3 EQUI 238 EE SLDO 7

153 99 SQR 196 C4 GEQI 239 EF SLDO 8

154 9A STO 197 C5 GRTI 24 F@ SLDO 9

155 9B IXS 198 C6 LLA 241 F1 SLDO 10
156 9C TUNI 199 C7 LDCI 242 F2 SLDO 11
157 9D LDE 20 C8 LEQI 243 F3 SLDO 12
158 9E CSP 201 C9 LESI 244 F4 SLDO 13
159 9F LDCN 2¢2 CA LDL 245 F5 SLDO 14
160 A@ ADJ 2¢3 CB NEQI 246 F6 SLDO 15
161 Al FJp 204 CcC STL 247 F7 SLDO 16
162 A2 1INC 2¢5 CD CXP 248 F8 SIND @

163 A3 IND 206 CE CLP 249 F9 SIND 1

164 A4 IXA 2¢7 CF CGP 25¢ FA SIND 2

165 A5 LAO 208 D@ LPA 251 FB SIND 3

166 A6 LSA 2¢9 D1 STE 252 FC SIND 4

167 A7 LAE 21¢ D2 253 FD SIND 5

168 A8 MOV 211 D3 EFJ 254 FE SIND 6

169 A9 LDO 212 D4 NFJ 255 FF SIND 7

284 APPLE PASCAL OPERATING SYSTEM

OPERATING SYSTEM SUMMARY

OPERATING SYSTEM SUMMARY 285

OPERATING SYSTEM

The following commands are available at all levels of the system:

CTRL-A Shows the other 4@-character 'page" of screen display.

CTRL-Z Causes the display to follow the cursor right and left.

CTRL-(@ "Break" signal; does a "warm boot".

CTRL-F Stops program output to the screen or printer until the
next CTRL-F, without stopping the program.

CTRL-S Temporarily stops any program or process. On the next
CTRL-S, the program continues.

RESET Does a 'warm boot".

Power off-on

Does a "cold boot".

COMMAND LEVEL

1.

The Command level is reached automatically, each time the system is

booted, RESET, or initialized.

It is also reached when any program,

including any part of the operating system, is terminated.

Use the Command level options to select any of the main subdivisions
of the Apple Pascal operating system.

These are the Command level options:

F(ile
E(dit
C(ompile
A(ssemble
L(ink
X(ecute
R(un

D (ebug
U(ser-restart
I(nitialize
H(alt

Deals with the disks and disk files.

Helps you create and change text files.

Converts Pascal program text into executable P-code.

Converts 6502 assembly text into 65@2 machine code.

Combines external routines into a Pascal programe.

Loads and runs a utility program or other P-code file.

Executes the workfile, automatically compiling and
linking first, if necessary.

Not implemented; do not use this option.

Re-executes the last program or option executed.

Does a '"warm boot", like pressing RESET.

Does a '"code boot'", like turning the power on.

286 APPLE PASCAL OPERATING SYSTEM

FILER

1. From Command level, select F(iler. When FILER prompt line appears,

you may remove your boot diskette, if necessary.

2. Use Filer commands to move, save, and erase the workfile and other

disk files.

These are the Filer commands:

T(ransfer

M(ake
C(hange
R(emove
K(runch
Z(ero

G(et
S (ave
N(ew
W(hat

V(olumes
L(ist-dir
E(xt-dir

B(ad-blks
X(amine

P(refix
D(ate
Q(uit

Copies a file or entire diskette to another diskette or

device. Source diskette must be in a drive to begin.
Creates a dummy file on diskette.

Renames a file or diskette.

Erases a file from its diskette directory.
Packs all files together on a diskette.
Erases a directory and renames the diskette.

Designates a file to be used as the next workfile.
Saves the workfile on diskette.

Clears the workfile.
Tells the original name of the current workfile.

Shows which devices and diskettes are in the system.
Shows what files are on a diskette.
Shows what files are on a diskette, giving more information.

Tests diskette information for correct recording.
Tries to fix information reported bad by B(ad-blks.

Sets the default volume name.
Sets the current date.

Leaves the Filer and returns to Command level. Be sure
your boot diskette is in the boot drive.

OPERATING SYSTEM SUMMARY 287

EDITOR

l. From Command level, select the F(iler. Start a N(ew file or G(et

“an old file for re-editing (one-drive note: first T(ransfer the
old file onto your boot diskette). Q(uit the Filer.

2. From Command level, select the E(ditor. Press the RETURN key if
you are beginning a new file. Use the Editor commands to I(nsert,
D(elete, X(change, and move text. When you are through, Q(uit and
U(pdate the workfile.

3. 1If this is a program, you may R(un it now. Repeat steps 2 and 3
until the program runs correctly.

4. From the Command level, select the F(iler. S(ave the workfile.

These are the Editor commands:

J (ump
P(age
F(ind /x/

I(nsert
D(elete
Z (ap

C(opy

X(change

R(eplace /x//y/ Replaces next "x" by "y

A(djust
M(argin

S (et

V(erify
Q(uit

Moves cursor to file’s B(eginning, E(nd, or preset M(arker._
Moves cursor one page.

Moves cursor to next "

x".

Inserts typed text at cursor.

Moving cursor erases text.

Erases all text from cursor to start of last F(ind,
R(eplace, or I(msert.

Inserts B(uffer (last insertion or deletion) or
diskette F(ile at cursor.

Replaces character at cursor by typed character.
n,n nen

Moves line at cursor right and left.
Formats all text between two blank lines (one paragraph).

Places a M(arker at cursor, or sets E(nvironment options
for A(uto-indent, F(illing, margins, etc.

Redisplays screen with errors gone.

Leaves the Editor. You may U(pdate the workfile, E(xit
without updating, W(rite to any diskette file
before returning to Command level or S(ave to your
original file.

288 APPLE PASCAL OPERATING SYSTEM

COMPILER

1.

2.

From Command level, select R(un or C(ompile.
If a text workfile exists, that file is compiled automatically.
Otherwise, you are prompted to specify a source textfile and then

to specify a destination codefile.

If the Compiler finds an error, select the E(ditor to fix it.

ASSEMBLER

1.

2.

From Command level, select A(ssemble.

If a text workfile exists, that file is assembled automatically.
Otherwise, you are prompted to specify a source textfile and then
to specify a destination codefile.

Finally, you are prompted to specify an output textfile for the
assembly listing, if you want one.

If the Assembler finds an error, select the E(ditor to fix it.

LINKER

1.

2.

From Command level, select R(un or L(ink.

R(un links the compiled workfile to UNITs and routines found in
SYSTEM.LIBRARY, automatically. L(ink prompts you to specify a

host codefile and then to specify as many library codefiles as

needed. Press the RETURN key to stop giving library files.

Next, you are prompted to specify a map textfile for storing Linker
information. Normally, just press the RETURN key to go on.

Finally, you are prompted to specify an output codefile for the
linked program.

OPERATING SYSTEM SUMMARY 289

UTILITIES

l. From Command level, select the X(ecute option. When you are
prompted EXECUTE WHAT FILE?, type the name of a utility program.

2. The utility programs enable you to format new diskettes, put

routines into a library file, change the system to use an external
terminal, change printer output, and use your Apple as a calculator.

These are the Utility programs:

FORMATTER Prepares new diskettes for use by Apple Pascal.

LIBRARY Puts UNITs and routines into a library file.

LIBMAP Shows the contents of a library file.

SETUP Changes the system for use with an external terminal.
BINDER Changes the system for use with an external terminal.
LINEFEED Stops the sending of linefeed after RETURN to printers.
CALC Lets you add, subtract, divide, and multiply numbers.

290 APPLE PASCAL OPERATING SYSTEM

INDEX

INDEX 291

A

«ABSOLUTE , Assembler

directive 161, 173
activation record 258-260
address field 25
A(djust ,

Editor command 113 114, 126
APPLESTUFF , Intrinsic Unit 176
APPLEQ, contents of 273
APPLEl, contents of 273
APPLE2, contents of 273
APPLE3, contents of 273
architecture, P-machine 224-245
ASCII character code 283
.ASCII , Assembler

directive 159, 173
A(ssemble ,

outer level command 17, 138
Assembler, 136-174

directives 157-172

directives, summary 172-174

diskfiles needed 13, 136-137

error messages 281-282

example 142-150

introduction 136-138

linkage to assembly

routines 155-156

summary 289

syntax of files 151

syntax of statements 152-155

use 138-150
assembly file specification

syntax 152
asterisk

and P(refix command 65

as specification for

SYSTEM LIBRARY 193
as volume name
of system disk 28
in assembly listings 148
in file size
specification 30, 44, 137, 139
A(uto-indent, in Editor Environment
text formatting
option 98-101, 119

and Editor M(argin command 114

292 APPLE PASCAL OPERATING SYSTEM

B

B(ad Blocks ,
Filer command 61-62, 69
BINDER , utility 210-213
blocks 25
-BLOCK , Assembler
directive 160, 173
boot diskette 14, 56
boot disk drive 14
booting the system 7-8, 12
brackets, as file size specifiers 44
-BYTE , Assembler directive 160, 173

C

CALC , utility 216-218, 221
diskfiles needed 216
use 217-218
summary 221
calculator 216-218, 221
C(hange , Filer command 45-47, 68
Changing GOTOXY
diskfiles needed 211
example 211-213
summary 220
code files,
format of 248-253, 262, 266-270
.CODE (versus .TEXT),
when to use 272
cold boot 7, 12
colon, and P(refix option 65
as volume specifier 26, 28
comma, as file separator 33, 45
C(ommand character,
in Editor 115, 120
Command level 5-20
Command level options 16-19
Command op tions summary 20
commands usable
at all levels 9-10
diskfiles needed 11-16
overall summary 286
the operating system 6-9
commands, Command level
description 16-19
summary 20, 286
commands, Editor
description 89-123
summary 124-125, 288

commands, Filer

description 34-66

summary 67-69, 287
Communications

Interface Card 6, 202
C(ompile , outer level

command 16, 130
Compiler, 127-132

diskfiles needed 13, 128-130

introduction 128

summmary 289

use 130-132
CONSOLE: , volume name 26, 56
console, external

hardware requirements, 202-209

in SETUP utility 199-202
«CONST , Assembler

directive 166, 173
copy buffer, in Editor 105-107
C(opy , Editor command 104-107, 126
copying a diskette 42-43

F(rom a diskette file 104-105

from the copy B(uffer 105-107
copyright, and library files 192-193
CTRL-A , to see other half
of text screen 9, 67, 75
CTRL-C , in Editor 78, 87, 88
CTRL-F , to flush output 10, 67
CTRL-I , TAB key 92, 125
CTRL-K , to make [67, 85, 125
CTRL-L , to move cursor

down 85, 86, 125
CTRL-0 , to move cursor up 85,
CTRL-Q , to move cursor

to left margin 125
CTRL-S , to stop execution

temporarily 10, 67
CTRL-X , to erase line 7, 125
CTRL-Z , to auto-follow

cursor 10, 67, 75
CTRL-@ , to warm boot 10
cursor, in Editor 85-86, 90-92, 125

124

D

data field 25
data files, format of 266
D(ate , Filer command 65-66, 69
D(ebug , outer level

prompt only 19, 20

DEC VT52, external terminal 202
-DEF , Assembler

directive 168, 173
D(elete ,

Editor command 88,
delimiters, in Editor

for paragraphs 120

with F(ind 95

with R(eplace 110
directives, Assembler

description 157-172

summary 172-174
directory of diskette 25, 56-60
diskette, names 273
diskette directory 25, 56-60
diskettes, contents of 273
diskettes, damaged 61-64
diskette files needed for

Assembler 13, 136-138

Calculator 216

Changing GOTOXY

Communication 211

Command level 11-13

Compiler 13, 128-130

Editor 13, 72

Filer 13, 24

Formatter 184-185

Library mapping 194-195

Linker 13, 176-178

Removing linefeed from return 214

System Librarian 187-188

System reconfiguration 199-200

system, summary 13-14
dollar sign, as destination
file specification

in Filer 36, 67

in Assembler 138

in Compiler 131

in Linker 181
duplicating a diskette 42-43

101-103, 126

E

E(dit, outer level command 16, 83
Editor 70-126
brief scenario 77-83
command summary 125-126
commands 89-123
diskfiles needed 13, 72
introduction 72
overall summary 290

INDEX 293

«ELSE , Assembler directive 165,
+END , Assembler directive 159,
+ENDC , Assembler directive 165,
+ENDM , Assembler directive 163,
Enviromment options,

in Editor 118-121, 126
equals sign,

cursor move

in Editor 92, 103, 125

wildcard in Filer 30-33

wildcard in LIBRARY utility 191
+EQU , Assembler directive 161, 173
error handling by P-machine 226
error messages,

assembly errors 281-282

execution errors 278-279

input/output errors 280
<ESC>, to escape

from Editor command 87
<ETX>, to accept Editor command 87
evaluation stack, P-machine 229
eXchange , Editor command 107, 126
execution error messages 278-279
E(xit , Editor command 122-123, 126
E(xtended directory list,

Filer command 59-60, 69
EXTERNAL routines 155, 176-180
external terminal 6, 199-213,
219-220

173
172
173
173

F

file types, list of 28
F(ile, outer level command 16, 33
file-specification syntax 29, 67
filenames 30, 6/
Filer 22-69
command summary 67
commands 34-66
diskfiles needed 13, 24
introduction 24-25
overall summary 287
use 33
files 25, 28-33
diskette file types 28
filenames 30, 67
file size specification 30
maximum number 25
maximum size 98
shorthand filename 30
wildcards 30-31
workfiles 29

294 APPLE PASCAL OPERATING SYSTEM

filling,
text formatting command 98-101,
and M(argin command 114
F(ind , Editor command 93-97, 126
L(iteral or T(oken search 94
Repeat-factor 94
Same-string option 95
Set direction 94
Target string and delimiters 95
FORMATTER , utility 184-186, 218
diskfiles needed 184-185
use 185-186
summary 218
formatting commands in Editor 98-101
formatting diskettes 184-186, 218
«FUNC , Assembler directive 159,
function calls, P-machine 240-242

172

G

G(et , Filer command 51-52, 68
GOTOXY procedure 210-213, 220
greater than character,

in Editor 91-92, 125

H

H(alt
diskfiles needed
HAZELGOTO.CODE 210,
HAZEL .MISCINFO 199
Hazeltine 1500 6, 202, 210

, outer level command 19, 20
14

211

+IF , Assembler directive 165, 173
include-file 132, 140
«INCLUDE , Assembler
directive 172, 174
I(nitialize,
outer level command 19, 20
diskfiles needed 14

initializing a diskette 184-186, 218
input/output devices

by slot number 277-278
by volume number 26, 267

125

input/output error messages 280-281
I(nsert ,

Editor command 87-88, 97-101, 126
instruction set, P-machine 229-245
« INTERP ,

Assembler directive 162, 173
interpreter, P-coae 7, 128
INTRINSIC UNITS 176-180
I/0 error messages 280-281

J

J(ump , Editor command 92-93, 125

K

K(runch , Filer command 49-50, 68

L

L(eft margin,
Editor enviromment option 120
less-than character,
in Editor 91-92, 125
LIBMAP , utility 194-198, 219
diskfiles needed 194-195
use 195-196
summary 219
LIBRARY , utility 186-193, 218-219
diskfiles needed® 187-188
example 188-193
use 193
summary 218-219
library files 188-195
library mapping 194-198, 219
linefeed, removing from
carriage return 214-215, 220
LINEFEED , utility 214-215, 220
diskfiles needed 214
example 197-198
summary 220
use 215
L(ink, outer level command 17, 178

Linker, 175-181
diskfiles needed 13, 176-178
introduction 176
summary 289
use 178-181
.LIST , Assembler Directive 170, 174
L(ist directory ,
Filer command 56-59, 69
L(iteral or T (oken search, in Editor
using F(ind 94

using R(eplace 109

M

«MACRO , Assembler directive 163, 173
«MACROLIST ,

Assembler directive 170, 174
M(ake , Filer command 44-45, 68
mapfile 181, 195
M(argin , Editor command 114-116, 126
markers, in Editor

J(ump command 92-93

S(et command 116-117
memory map, Apple II, 254-255

N(ew , Filer command 55, 68
NOLIST ,

Assembler directive 170, 174
«NOMACROLIST ,

Assembler directive 170, 174
«NOPATCHLIST ,

Assembler directive 170, 174

@)

op codes, P-machine, 284
operand formats, P-machine 227-228
operating system 2-3, 6
command summary 21
overall summary 285-290
-ORG , Assembler directive 161, 173

INDEX 295

P

P-code 16, 128
P-machine 128, 223264

instruction set 229-245

op—-codes 284

operation of 247-264

technical information 224-228
-PAGE , Assembler directive 171, 174
P(age , Editor command 85, 93, 125
paragraph,

as defined by Editor 114-115
P(aragraph margin,

Editor Environment option 120
«PATCHLIST ,

Assembler directive 170, 174
"pound" sign,

to indicate block structure 56
Power Down-and-Up 10
P(refix , Filer command 28, 65, 69
PRINTER: , volume name 26
- PRIVATE ,

Assembler directive 167, 173
procedure dictionary, 251
«PROC , Assembler directive 158, 172
program stack,

P-machine 229, 256-257
prompt line, command level 6

Edi tor 76

Filer 33
Pseudo-machine (see P-machine)
-PUBLIC ,

Assembler directive 166, 173

Q

question mark,
at end of command prompt line 7
wildcard in Filer 30-33
wildcard in LIBRARY utility 191
Q(uit , Editor command 88, 122, 126
Filer command 66, 69

R

reference symbol table,
in Assembler 142

«REF , Assembler directive 169, 173

296 APPLE PASCAL OPERATING SYSTEM

registers 224-225
REMIN: , volume name 26
REMOUT: , volume name 26
R(emove , Filer command 48-49, 68
removing linefeed from
carriage return 214-215, 220
repeat-factor, in Editor 91, 125
with D(elete 101
with F(ind 94
with R(eplace 109
with Z(ap 103
R(eplace ,

Editor command 108-113, 126
Literal or Token search 109
Repeat factor 109
Same-string option 111
Set direction 108
V(erify option 109

RESET 10
R(eturn , Editor command 123, 126
R(ight margin,
Editor Environment option 120
ROOT VOLUME 28, 56
R(un ,
outer level command 18-19, 20, 78
diskfiles needed 24

S

S(ame-string, Editor option
with F(ind 95
with R(eplace 111
S(ave , Editor command 124, 126
S(ave , Filer command 53-55, 68
screen display 6, 75, 91
sectors, on diskettes 25
segment dictionary 250
segments, in codefile 248, 250-251
set direction 91-92, 125
with F(ind 94
with R(eplace 108
S(et , Editor command
E(nvironment 118-121, 126
M(arker 116-117, 126
SETUP parameters, list of 203-209
SETUP , utility 199-202, 219
diskfiles needed 199
external terminal
requirements 202-208
summary 219
use 200

SHIFT M , to make] 67, 85, 125
6500.ERRORS 136
6500.0PCODES 136
6502 Assembler,
error messages 281-283
slash, in Editor
as "infinite" repeat factor 91
as string delimiter 95, 111

target string, in Editor 110
terminal,

external 6, 199-213, 219-220

text files, format of 266
text formatting, in Editor 98-101
-TEXT (versus .CODE), when to use 272

slot numbers of peripherals 26, 277 The Last Assemmbler (TLA) 136

slots, in SYSTEM.LIBRARY 189-193
Soroc IQl20 6, 202, 210

SETUP procedure 212-214
SOROCGOTO0.CODE 210, 211
SOROC.MISCINFO 199
string delimiters, in Editor 95,110
string replacement, in Editor 108-113
substitute string, in Editor 110
summary, Assembler 289

Assembler directives 157-172

Command options 20

Compiler 289

Editor commands 125-126

Editor, use of 288

Filer commands 67-69

Filer, use of 287

Linker 289

operating system 285-290

utilities 219-222, 290
SYMBOLTABLE DUMP, in Assembler 142
syntax diagram, assembly file 151

file specification 29

volume specification 27
SYSCOM communications,

P-machine 226-227
system reconfiguration 199-209, 219
SYSTEM.APPLE 7, 274
SYSTEM.ASSEMBLER 136-137, 275
SYSTEM.CHARSET 274
SYSTEM.COMPILER 128-129, 274
SYSTEM.EDITOR 72, 274
SYSTEM.FILER 24, 274
SYSTEM.LIBRARY 177-179, 186-193, 274
SYSTEM.LINKER 176-177, 274
SYSTEM.MISCINFO 199-201, 274
SYSTEM.PASCAL 7, 12, 274
SYSTEM.SWAPDISK 130, 137-138
SYSTEM.SYNTAX 128-129, 274
SYSTEM.WRK.CODE , see workfile
SYSTEM.WRK.TEXT , see workfile
SYSTERM: , volume name 26, 56

The Program,

Pascal example 248-249, 263-264

.TITLE , Assembler directive 171, 179
T(oken default ,

Environment option 121

with F(ind 93

with R(eplace 109

tracks, on diskette 25

T(ransfer , Filer command 34-41, 68
turnkey system 8
TURTLEGRAPHICS, Intrinsic Unit 176

UNITs 176-180
U(pdate ,

Editor command 78, 89, 122, 126

U(ser restart,

outer level command 19, 20
diskfiles needed 14

utility programs

calculator 216-218, 222
changing GOTOXY

communication 210-213, 220
formatting new

diskettes 184-186, 218
introduction 184
removing linefeed

from return 214-215, 220
summary 218-221, 290
system librarian 186-193, 218-219
system

reconfiguration 199-209, 219

V(erify, Editor command 122, 126
V(erify option,

with R(eplace 109, 125

INDEX 297

volume 26
shorthand volume names 28
specification 26-27
volume names and nurbers,
chart of 26, 276
volume-specification syntax 27, 67
V(olumes , Filer command 55-56, 69

W

warm boot 8, 12
W(hat , Filer command 55, 68
wildcards 30-33
and C(hange command 46-47
and LIBRARY utility 191
and L(ist directory 56-58
and R(emove command 48-49
and T(ransfer command 39-41
.WORD , Assembler directive 160, 173

workfile 9, 29, 77-82, 84-85
and Asssembler 138-140
and Compiler 130-132
and Filer commands 51-55
clearing 55, 77
saving 53-55, 79-81
starting 55, 78
updating 78
W(rite , Editor command 123, 126

X-Y

X(amine , Filer command 62-64, 69
X(change , Editor command 107, 126
X(ecute ,
outer level command 17-18, 20
diskfiles needed 14
also see utility programs

z

Z(ap , Editor command 103-104, 126
Z(ero , Filer command 50-51, 68

/

as "infinite" repeat factor 91
as string delimiter 95, 111

298 APPLE PASCAL OPERATING SYSTEM

*

as file size

specification 30, 44, 137, 139
and P(refix command 65
as specifier for SYSTEM.LIBRARY 193
as volume name of system disk 28
in assembly listings 138

A

as C(ommand character 115

as file separator 33, 45

and P(refix option 65
as volume specifier 26, 28

)

and T(ransfer command 36, 67
in Assembler 138

in Compiler 131

in Linker 181

cursor move in Editor 92, 103, 124
wildcard in Filer 30-33
wildcard in LIBRARY Utility 191

< and >

to set direction in Editor 91-92,139

2

for seeing more of prompt line 7
wildcard in Filer 30-33
wildcard in LIBRARY utility 191

FORMATTER
LIBRARY
LIBMAP
HALT SETUP
BINDER
LINEFEED
CALC

EDIT USER
PROGRAMS

prs——— e e
[soee || eace || rmo |

at

N

[pecaning] [mvp] [marker |

—
| LiteraL | | Token |[save |

e ¥

ENVIRONMENT

TOKEN
DEFAULT

PARAGRAPH
MARGIN

| SAVE i i WRITE |‘ UPDATE

‘f‘gpple computer Iinc.

10260 Bandley Drive
Cupertino, California 95014
(408) 996-1010

030-0100-00

	Apple Pascal Operating System Reference Manual
	Table of Contents
	Ch. 1: Introduction
	Ch. 2: The Command Level
	The Operating System
	The Screen Display
	The Prompt Line
	Diskfiles Needed for Booting
	Making a Turnkey System
	The Workfile

	Commands Usable at All Levels
	Ctrl-A
	Ctrl-Z
	Ctrl-@
	Ctrl-F
	Ctrl-S
	Power Down & Up
	Reset

	Using the Command Level
	Diskfiles Needed

	The Command Level Options
	F(ile
	E(dit
	C(ompile
	A(ssemble
	L(ink
	X(ecute
	R(un

	Command Option Summary

	Ch. 3: The Filer
	Introduction
	Diskfiles Needed
	Technical Information

	Volumes
	Input & Output Devices
	Specifying a Volume
	Shorthand Volume Names

	Files
	Diskette File Types
	The Workfile
	Specifying a File
	File Size Specification
	Shorthand Filename
	Wildcards

	Using the Filer
	The Filer Commands
	General File-Moving Command
	T(ransfer
	Copying a Diskette

	General Diskfile Commands
	M(ake
	C(hange
	R(emove
	K(runch
	Z(ero

	Workfiles Commands
	G(et
	S(ave
	N(ew
	W(hat

	Information Commands
	V(olumes
	L(ist Directory
	E(xtended Directory List

	Disk Upkeep Commands
	B(ad Blocks
	X(amine

	Miscellaneous Commands
	P(refix
	D(ate
	Q(uit

	File Command Summary
	File Specification
	System Commands
	General File-Moving Command
	General Diskfile Commands
	Workfile Commands
	Information Commands
	Disk Upkeep Commands
	Miscellaneous Commands

	Ch. 4: The Editor
	Introduction
	Diskfiles Needed
	A "Window" Into The File
	The Cursor
	The Prompt Line
	Notation

	A Brief Scenario
	Clearing the Workfile
	Starting a New File
	Updating The Workfile
	Saving the Workfile
	One-Drive Method
	Multi-Drive Method

	Re-editing an Old File
	One-Drive Method
	Multi-Drive Method

	A Little More Detail
	Entering The Editor
	Workfiles
	Some Hidden Characters
	Moving the Cursor
	Using I(nsert Mode
	Using D(elete Mode
	Leaving The Editor

	The Editor Commands
	General Information
	The Cursor
	The Screen
	Repeat-Factor
	The Set Direction
	Cursor Moves

	Moving Commands
	J(ump
	P(age
	F(ind
	I(nsert
	D(elete
	Z(ap
	C(opy
	X(change
	R(eplace

	Formatting Commands
	A(djust
	M(argin

	Miscellaneous Commands
	S(et
	V(erify
	Q(uit

	Editor Command Summary
	Screen Commands
	Special Characters
	Cursor Moves
	Repeat-Factor
	Set Direction
	Moving Commands
	Text Changing Commands
	Formatting Commands
	Miscellaneous Commands

	Ch. 5: The Pascal Compiler
	Introduction
	Diskfiles Needed

	Using the Compiler

	Ch. 6: The 6502 Assembler
	Introduction
	Diskfiles Needed

	Using the Assembler
	Reference Symbol Table
	Example
	An Assembly-Language Routine
	The Assembled Output Listing
	A Pascal Program Which Calls The Assembled Routine
	Compiling, Linking & Running the Calling Program

	Assembler Information
	Syntax of Assembly Files
	Syntax of Assembly Statements
	Identifiers
	Labels
	Local Labels
	Operators
	Constants
	Expressions
	Linkage to Assembly Routines

	The Assembler Directives
	An Overview
	Routine-Delimiting Directives
	Label Definitions & Space Allocation Directives
	Macro Facility Directives
	Conditional Assembly Directives
	Host-Communication Directives
	External Reference Directives
	Listing Control Directives
	File Directive

	Assembler Directive Summary
	Metasymbol Notation
	Routine Delimiting Directives
	Label Definitions & Space-Allocation Directives
	Macro Facility Directives
	Conditional Assembly Directives
	Host-Communication Directives
	External Communication Directives
	Listing Control Directives
	File Directive

	Ch. 7: The Linker
	Introduction
	Diskfiles Needed
	Using The Linker

	Ch. 8: Utility Programs
	Introduction
	Formatting New Diskettes
	Diskfiles Needed
	Using the Utility

	The System Librarian
	Diskfiles Needed
	Example: Installing a Unit or Routine Into A Library
	Using the New Library
	Shorthand Filenames

	Library Mapping
	Diskfiles Needed
	Using the Utility
	Example: Map of SYSTEM.LIBRARY

	System Reconfiguration
	Diskfiles Needed
	Using the Utility
	External Terminal Requirements
	Miscellaneous Information
	General Terminal Information

	Control Key Information
	Video Screen Control Characters
	List of All Setup Parameters

	Changing GOTOXY Communication
	Diskfiles Needed
	Example: Setup for SOROC IQ120

	Removing Linefeed from Return
	Diskfiles Needed
	Using the Utility
	Easier Use of the Utility

	Calculator
	Diskfiles Needed
	Using the Utility

	Utilities Summary
	Formatting New Diskettes
	The System Librarian
	Library Mapping
	System Reconfiguration
	Changing GOTOXY Communication
	Removing Linefeed from Return
	Calculator

	Appendix A: Architecture of the P-Machine
	Technical Information
	Introduction
	Hardware Emulation: Registers
	Communications Between Operating System & The P-Machine
	Error Handling
	Operand Formats

	The P-Machine Instruction Set
	Instruction Formats
	Conventions & Notation
	One-Word Loads & Stores
	Constant
	Local
	Global
	Intermediate
	Indirect
	Extended

	Multiple-Word Loads & Stores (Reals & Sets)
	Byte Array Handling
	String Handling
	Record & Array Handling
	Dynamic Variable Allocation

	Top-of-Stack Arithmetic
	Integers
	Non-Integer Comparisons
	Reals
	Strings
	Logical
	Sets
	Byte Arrays
	Records & Word Arrays
	Jumps

	Procedure & Function Calls
	System Support Procedures
	Byte Array Procedures
	Compiler Procedures
	Miscellaneous

	Appendix B: Operation of the P-Machine
	Introduction
	The System Codefile
	Segments
	A Codefile on Diskette
	The Segment Dictionary
	A Code Segment
	A Procedure Dictionary
	A Procedure Code Section

	System Memory Use
	Apple II Memory Map
	The Program Stack
	An Activation Record
	More on the Program Stack

	Overview
	Summary of the Figures
	"The Program"

	Appendix C: File Formats
	Text Files
	Data Files
	Code Files

	Appendix D: Tables
	When to Use .TEXT & .CODE
	Language System Diskette Files
	Pascal I/O Device Volumes
	Apple I/O Device Slots
	Execution Error Messages
	I/O Error Messages
	6502 Assembler Error Messages
	ASCII Character Codes
	P-Machine OP-CODES

	Appendix E: Operating System Summary
	Operating System
	Command Level
	Filer
	Editor
	Compiler
	Assembler
	Linker
	Utilities

	Index
	Back Cover

